亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Cognitive Decline for Enrichment of Alzheimer’s Disease Clinical Trials

痴呆 疾病 临床试验 神经影像学 认知 阿尔茨海默病神经影像学倡议 认知功能衰退 医学 人口统计学的 阿尔茨海默病 磁共振成像 心理学 内科学 精神科 人口学 社会学 放射科
作者
Angela Tam,César Laurent,Serge Gauthier,Christian Dansereau
出处
期刊:JPAD [SERDI]
被引量:1
标识
DOI:10.14283/jpad.2022.49
摘要

A key issue to Alzheimer's disease clinical trial failures is poor participant selection. Participants have heterogeneous cognitive trajectories and many do not decline during trials, which reduces a study's power to detect treatment effects. Trials need enrichment strategies to enroll individuals who are more likely to decline.To develop machine learning models to predict cognitive trajectories in participants with early Alzheimer's disease and presymptomatic individuals over 24 and 48 months respectively.Prognostic machine learning models were trained from a combination of demographics, cognitive tests, APOE genotype, and brain imaging data.Data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), National Alzheimer's Coordinating Center (NACC), Open Access Series of Imaging Studies (OASIS-3), PharmaCog, and a Phase 3 clinical trial in early Alzheimer's disease were used for this study.A total of 2098 participants who had demographics, cognitive tests, APOE genotype, and brain imaging data, as well as follow-up visits for 24-48 months were included.Baseline magnetic resonance imaging, cognitive tests, demographics, and APOE genotype were used to separate decliners, defined as individuals whose CDR-Sum of Boxes scores increased during a predefined time window, from stable individuals. A prognostic model to predict decline at 24 months in early Alzheimer's disease was trained on 1151 individuals who had baseline diagnoses of mild cognitive impairment and Alzheimer's dementia from ADNI and NACC. This model was validated on 115 individuals from a placebo arm of a Phase 3 clinical trial and 76 individuals from the PharmaCog dataset. A second prognostic model to predict decline at 48 months in presymptomatic populations was trained on 628 individuals from ADNI and NACC who were cognitively unimpaired at baseline. This model was validated on 128 individuals from OASIS-3.The models achieved up to 79% area under the curve (cross-validated and out-of-sample). Power analyses showed that using prognostic models to recruit enriched cohorts of predicted decliners can reduce clinical trial sample sizes by as much as 51% while maintaining the same detection power.Prognostic tools for predicting cognitive decline and enriching clinical trials with participants at the highest risk of decline can improve trial quality, derisk endpoint failures, and accelerate therapeutic development in Alzheimer's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
赵赵发布了新的文献求助10
7秒前
10秒前
迅速的岩发布了新的文献求助10
14秒前
赵赵完成签到,获得积分20
19秒前
Willow完成签到,获得积分10
22秒前
JamesPei应助赵赵采纳,获得10
30秒前
研友_VZG7GZ应助轻松凌柏采纳,获得10
31秒前
35秒前
符寄云发布了新的文献求助10
40秒前
充电宝应助yihuifa采纳,获得10
49秒前
斯文败类应助符寄云采纳,获得10
53秒前
小马甲应助皮皮桂采纳,获得10
53秒前
57秒前
1分钟前
1分钟前
皮皮桂发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
阿里完成签到,获得积分10
1分钟前
西山菩提完成签到,获得积分10
1分钟前
王王碎冰冰完成签到,获得积分10
1分钟前
1分钟前
2分钟前
科研兵完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
共享精神应助Harrison采纳,获得10
2分钟前
轻松凌柏发布了新的文献求助10
2分钟前
3分钟前
852应助koubi采纳,获得10
3分钟前
3分钟前
善学以致用应助Harrison采纳,获得10
3分钟前
浮游应助mmm采纳,获得10
3分钟前
3分钟前
koubi发布了新的文献求助10
4分钟前
打打应助ZoyaR采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472833
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553