Prior Knowledge-Aware Fusion Network for Prediction of Macrovascular Invasion in Hepatocellular Carcinoma.

人工智能 判别式 计算机科学 模式识别(心理学) 可解释性 分割 特征提取 图像分割 机器学习 计算机视觉
作者
Haoran Lai,Sirui Fu,Jie Zhang,Jianyun Cao,Qianjin Feng,Ligong Lu,Meiyan Huang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2022.3167788
摘要

Macrovascular invasion (MaVI) is a major threat to survival in hepatocellular carcinoma (HCC), which should be treated as early as possible to ensure safety and efficacy. In this aspect, MaVI prediction can be helpful. However, MaVI prediction is difficult because of the inter-class similarity and intra-class variation of HCC in computed tomography (CT) images. Moreover, existing methods fail to include clinical priori knowledge associated with HCC, leading to incomprehensive information extraction. In this paper, we proposed a prior knowledge-aware fusion network (PKAFnet) to accurately achieve MaVI prediction in CT images. First, a perception module was presented to extract features related to tumor marginal heterogeneity in the graph domain, which contributed to rotation invariance and captured intensity variations of tumor margin. Second, a tumor segmentation network was built to obtain global information of a 3D tumor image and information associated with tumor internal heterogeneity in the image domain. Finally, multi-domain features associated with the tumor margin and tumor region were combined by using a multi-domain attentional feature fusion module. Thus, by incorporating MaVI-related prior knowledge, our PKAFnet can alleviate overfitting, which can improve the discriminative ability. The proposed PKAFnet was validated on a multi-center dataset, and remarkable performance was achieved in an independent testing set. Moreover, the interpretability of perception module and segmentation network were presented in our paper, which illustrated the effectiveness and credibility of PKAFnet. Therefore, the proposed method showed great application potential for MaVI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
llin发布了新的文献求助10
1秒前
科研通AI2S应助格格巫采纳,获得30
2秒前
华仔应助后来采纳,获得10
2秒前
2秒前
fengmian完成签到,获得积分10
4秒前
SUn完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
we6401关注了科研通微信公众号
6秒前
sia发布了新的文献求助50
6秒前
脑洞疼应助磊磊猪采纳,获得10
6秒前
畅快的天空完成签到,获得积分10
6秒前
佳佳528完成签到,获得积分10
6秒前
7秒前
8秒前
英姑应助芝麻配海带采纳,获得10
8秒前
8秒前
8秒前
8秒前
罗妙梦完成签到,获得积分10
9秒前
Yy1331发布了新的文献求助10
9秒前
miurny完成签到,获得积分10
10秒前
搞怪莫茗完成签到,获得积分10
11秒前
勤劳亦瑶发布了新的文献求助10
11秒前
11秒前
善学以致用应助高有财采纳,获得10
11秒前
11秒前
健忘的蓉发布了新的文献求助10
11秒前
11秒前
11秒前
红岸发布了新的文献求助30
11秒前
11秒前
田改发布了新的文献求助10
12秒前
12秒前
彭于晏应助张熙采纳,获得10
12秒前
qyt发布了新的文献求助10
12秒前
重要无招完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3912420
求助须知:如何正确求助?哪些是违规求助? 3457670
关于积分的说明 10897006
捐赠科研通 3183982
什么是DOI,文献DOI怎么找? 1759971
邀请新用户注册赠送积分活动 851236
科研通“疑难数据库(出版商)”最低求助积分说明 792559