亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Tunnel Crack Inspection Using an Efficient Mobile Imaging Module and a Lightweight CNN

计算机科学 卷积神经网络 扫描仪 人工智能 结构工程 工程类
作者
Jianghai Liao,Yuanhao Yue,Dejin Zhang,Wei Tu,Rui Cao,Qin Zou,Qingquan Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 15190-15203 被引量:90
标识
DOI:10.1109/tits.2021.3138428
摘要

Cracks in tunnel linings are the most common tunnel defects. As early indicators of structural deterioration, cracks represent critical problems for the safety of tunnels. Several mobile tunnel inspection systems (MTISs) have been developed for tunnel crack inspection. However, due to the weak signals of cracks, these MTISs require considerable exposure time to capture high-quality tunnel images, necessitating a low travel speed. Meanwhile, traditional crack detection methods encounter difficulties in processing tunnel crack images because of their low contrast and poor continuity. To overcome these challenges, this study presents a new MTIS for fast tunnel crack inspection that consists of a novel mobile imaging module and an automatic crack detection module. The imaging module is composed of an array of high-resolution charge-coupled device (CCD) cameras, a mobile laser scanner, and a lighting array. The core of the crack detection module is a novel lightweight convolutional neural network (CNN) designed for efficient tunnel crack detection, with an effective spatial constraint strategy to guarantee crack continuity. We collected a new tunnel crack dataset consisting of 1,218 images using our mobile imaging module at a driving speed of 80 km/h. Comprehensive experiments were conducted on this dataset to evaluate the performance of our proposed network. The results demonstrate that the presented CNN can effectively detect tunnel cracks with state-of-the-art performance, achieving an F1-score greater than 0.88 and an inference speed of 17 FPS with only 3.4M model parameters. The code and data are available at https://github.com/urban-informatics/LinkCrack .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
51秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
牟白容发布了新的文献求助10
1分钟前
2分钟前
牟白容完成签到,获得积分10
2分钟前
2分钟前
B4Bear完成签到,获得积分10
2分钟前
慕青应助诚心山灵采纳,获得10
2分钟前
2分钟前
诚心山灵完成签到,获得积分20
2分钟前
2分钟前
2分钟前
诚心山灵发布了新的文献求助10
2分钟前
balko完成签到,获得积分10
2分钟前
2分钟前
任朝暮关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
任朝暮发布了新的文献求助10
3分钟前
Criminology34举报吴荣方求助涉嫌违规
3分钟前
ph发布了新的文献求助10
3分钟前
ph完成签到,获得积分10
3分钟前
3分钟前
3分钟前
老石完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
任朝暮完成签到,获得积分10
4分钟前
4分钟前
4分钟前
认真日记本完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
无问东西发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595785
求助须知:如何正确求助?哪些是违规求助? 4681007
关于积分的说明 14818241
捐赠科研通 4653406
什么是DOI,文献DOI怎么找? 2535696
邀请新用户注册赠送积分活动 1503562
关于科研通互助平台的介绍 1469783