Traffic Volume Estimate Based on Low Penetration Connected Vehicle Data at Signalized Intersections: A Bayesian Deduction Approach

体积热力学 全球定位系统 交叉口(航空) 泊松分布 探测器 计算机科学 弹道 交通量 数据集 模拟 算法 实时计算 数学 工程类 统计 运输工程 人工智能 量子力学 电信 物理 天文
作者
Zhao Zhang,Siyao Zhang,Lei Mo,Mengdi Guo,Feng Liu,Xin Qi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 10596-10609
标识
DOI:10.1109/tits.2021.3094933
摘要

The emergence of connected vehicle (CV) technologies has created new traffic control opportunities, among them, is the potential to estimate volume without approach lane detection. Rather than requiring the expense and effort to install and maintain detector systems, this new “detector-free” method permits traffic volume to be estimated from CV GPS trajectory data. Unfortunately, however, CV GPS methods are limited not only to locations where CV GPS data can be recorded, but also limited to time when CV GPS data is recorded. The goal of this research was to overcome these limitations and permit volume estimation to be accomplished under any location or condition, including low-penetration CV environments. The contributions made by this work are significant in two respects. First, it creates an improved queue-based method to estimate intersection approach volumes during each signal cycle with sparse CV data. Second, the research demonstrates the application of a Bayesian deduction method to approximate volume with no CV trajectory data. To accomplish this, traffic volumes are assumed to be time-dependent Poisson distributed throughout the day, and CV data were used to estimate CV volume and further set as prior to deduce the time-dependent Poisson arrival rate. To verify and evaluate the accuracy and effectiveness of this new method under a range of potential traffic conditions, a simulation case study and a NGSIM case study were implemented. Results of both case studies resulted in estimated-to-actual arrival rate average errors as low as 4.2 percent and volume estimation errors as low as 0.9 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zimu8473完成签到,获得积分10
2秒前
Fx完成签到 ,获得积分10
4秒前
4秒前
深情安青应助岁月轮回采纳,获得10
5秒前
风中高山完成签到,获得积分10
6秒前
鱼前完成签到,获得积分10
8秒前
lyj334发布了新的文献求助10
9秒前
我刚上小学完成签到,获得积分10
14秒前
sfsfes完成签到 ,获得积分10
16秒前
20秒前
22秒前
Devin完成签到 ,获得积分10
23秒前
24秒前
阿泽发布了新的文献求助10
27秒前
波里舞完成签到 ,获得积分10
28秒前
oboy应助淡定的半鬼采纳,获得10
28秒前
岁月轮回发布了新的文献求助10
29秒前
29秒前
rio完成签到 ,获得积分10
30秒前
35秒前
36秒前
36秒前
38秒前
39秒前
宋老师发布了新的文献求助50
40秒前
40秒前
小铁匠发布了新的文献求助10
41秒前
41秒前
jun完成签到 ,获得积分10
42秒前
42秒前
林先生完成签到,获得积分10
43秒前
chkskw发布了新的文献求助10
43秒前
CodeCraft应助要减肥的尔安采纳,获得10
44秒前
45秒前
47秒前
潘潘发布了新的文献求助10
48秒前
50秒前
Azyyyy发布了新的文献求助10
51秒前
52秒前
yuani111完成签到,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779966
求助须知:如何正确求助?哪些是违规求助? 3325374
关于积分的说明 10222718
捐赠科研通 3040551
什么是DOI,文献DOI怎么找? 1668879
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612