Development and Validation of a Machine-Learning Model for Prediction of Extubation Failure in Intensive Care Units

医学 重症监护 机器学习 呼吸频率 机械通风 特征工程 急诊医学 计算机科学 人工智能 重症监护医学 心率 血压 深度学习 内科学
作者
Qinyu Zhao,Huan Wang,Jing-Chao Luo,Minghao Luo,Leping Liu,Shen-Ji Yu,Kai Liu,Qian Zhang,Peng Sun,Guo-Wei Tu,Zhe Luo
出处
期刊:Frontiers in Medicine [Frontiers Media]
卷期号:8 被引量:50
标识
DOI:10.3389/fmed.2021.676343
摘要

Background: Extubation failure (EF) can lead to an increased chance of ventilator-associated pneumonia, longer hospital stays, and a higher mortality rate. This study aimed to develop and validate an accurate machine-learning model to predict EF in intensive care units (ICUs). Methods: Patients who underwent extubation in the Medical Information Mart for Intensive Care (MIMIC)-IV database were included. EF was defined as the need for ventilatory support (non-invasive ventilation or reintubation) or death within 48 h following extubation. A machine-learning model called Categorical Boosting (CatBoost) was developed based on 89 clinical and laboratory variables. SHapley Additive exPlanations (SHAP) values were calculated to evaluate feature importance and the recursive feature elimination (RFE) algorithm was used to select key features. Hyperparameter optimization was conducted using an automated machine-learning toolkit (Neural Network Intelligence). The final model was trained based on key features and compared with 10 other models. The model was then prospectively validated in patients enrolled in the Cardiac Surgical ICU of Zhongshan Hospital, Fudan University. In addition, a web-based tool was developed to help clinicians use our model. Results: Of 16,189 patients included in the MIMIC-IV cohort, 2,756 (17.0%) had EF. Nineteen key features were selected using the RFE algorithm, including age, body mass index, stroke, heart rate, respiratory rate, mean arterial pressure, peripheral oxygen saturation, temperature, pH, central venous pressure, tidal volume, positive end-expiratory pressure, mean airway pressure, pressure support ventilation (PSV) level, mechanical ventilation (MV) durations, spontaneous breathing trial success times, urine output, crystalloid amount, and antibiotic types. After hyperparameter optimization, our model had the greatest area under the receiver operating characteristic (AUROC: 0.835) in internal validation. Significant differences in mortality, reintubation rates, and NIV rates were shown between patients with a high predicted risk and those with a low predicted risk. In the prospective validation, the superiority of our model was also observed (AUROC: 0.803). According to the SHAP values, MV duration and PSV level were the most important features for prediction. Conclusions: In conclusion, this study developed and prospectively validated a CatBoost model, which better predicted EF in ICUs than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
916应助科研通管家采纳,获得30
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
机灵柚子应助科研通管家采纳,获得10
1秒前
机灵柚子应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
无聊科研应助科研通管家采纳,获得10
2秒前
机灵柚子应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
壁上同年完成签到,获得积分10
3秒前
3秒前
4秒前
在水一方应助gy采纳,获得10
4秒前
5秒前
5秒前
6秒前
情怀应助摇摇七喜采纳,获得30
6秒前
Asoqiang发布了新的文献求助10
7秒前
7秒前
dada完成签到,获得积分10
8秒前
8秒前
Artin驳回了冰魂应助
8秒前
Akim应助钦川采纳,获得10
9秒前
科研通AI2S应助苏酥采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
可爱的函函应助的的的墨采纳,获得10
10秒前
孙子钊发布了新的文献求助10
12秒前
zlf发布了新的文献求助10
12秒前
13秒前
14秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871187
求助须知:如何正确求助?哪些是违规求助? 3413299
关于积分的说明 10683969
捐赠科研通 3137766
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834643
科研通“疑难数据库(出版商)”最低求助积分说明 781250