Hybrid whale optimization algorithm with gathering strategies for high-dimensional problems

计算机科学 数学优化 聚类分析 差异进化 水准点(测量) 人工智能 算法 数学 大地测量学 地理
作者
Xinming Zhang,Shaochen Wen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:179: 115032-115032 被引量:53
标识
DOI:10.1016/j.eswa.2021.115032
摘要

• A novel two-stage individual-based Whale Optimization Algorithm is proposed. • Opposition learning and grey wolf optimizer are added to raise solution diversity. • A big parameter value and differential disturbance are adopted in the first stage. • Historical agent best solutions and a global-best way are used in the second stage. • Experiments are carried on high-dimensional functions and fuzzy C-means clustering. In order to solve the problems, such as insufficient search ability and low search efficiency, of Whale Optimization Algorithm (WOA) in solving high-dimensional problems, a novel Hybrid WOA with Gathering strategies (HWOAG) is proposed in this paper. Firstly, an individual-based updating way is used in HWOAG instead of the dimension-based updating one of WOA to reduce the computational complexity and to be more suitable for high-dimensional problems. Secondly, a random opposition learning strategy is embedded into the individual-based WOA to form an opposition learning WOA (OWOA), and Grey Wolf Optimizer (GWO) is integrated into OWOA to form an OWOA with GWO (OWOAG) so as to improve the global search ability of WOA. Finally, two standalone OWOAGs are formulated to balance exploration and exploitation better. The two OWOAGs adopt strategies such as switching parameter tuning, random differential disturbance and global-best spiral operator to get stronger search ability. A lot of experimental results on high-dimensional (i.e. 1000-, 2000-, 4000- and 8000- dimensional) benchmark functions and clustering datasets for Fuzzy C-Means (FCM) optimization show that HWOAG has stronger search ability and higher search efficiency than WOA and quite a few state-of-the-art algorithms and that all the strategies gathered to WOA are effective. The source codes of the proposed algorithm HWOAG are available at https://github.com/kangzhai/HWOAG .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏苏发布了新的文献求助10
1秒前
小二郎应助Villanellel采纳,获得10
2秒前
2秒前
化学纯蓝色完成签到,获得积分10
3秒前
情怀应助mingjie采纳,获得10
3秒前
打卡下班应助liu采纳,获得10
4秒前
kmelo完成签到,获得积分10
4秒前
5秒前
聪明煎蛋完成签到,获得积分10
7秒前
7秒前
TLY发布了新的文献求助30
7秒前
9秒前
syjssxwz发布了新的文献求助10
9秒前
9秒前
bz驳回了麒煜应助
10秒前
M3L2完成签到,获得积分10
13秒前
隐形傲霜完成签到 ,获得积分10
14秒前
mingjie完成签到,获得积分10
15秒前
专一的鸡翅完成签到 ,获得积分10
18秒前
George完成签到,获得积分10
18秒前
Villanellel完成签到,获得积分10
21秒前
13201099463完成签到,获得积分10
21秒前
22秒前
23秒前
嘿嘿完成签到,获得积分10
24秒前
4645发布了新的文献求助20
25秒前
xzy998应助ll采纳,获得30
26秒前
Ava应助悦耳的元彤采纳,获得10
26秒前
27秒前
27秒前
科研通AI2S应助稳重盼夏采纳,获得10
29秒前
笑点低怀薇完成签到 ,获得积分10
31秒前
33秒前
无聊的饼干完成签到,获得积分10
33秒前
mwm完成签到 ,获得积分10
34秒前
Etiquette发布了新的文献求助10
35秒前
奥奥没有利饼干完成签到 ,获得积分10
37秒前
37秒前
归尘应助咻咻采纳,获得10
38秒前
39秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120710
求助须知:如何正确求助?哪些是违规求助? 3658901
关于积分的说明 11582302
捐赠科研通 3360465
什么是DOI,文献DOI怎么找? 1846381
邀请新用户注册赠送积分活动 911179
科研通“疑难数据库(出版商)”最低求助积分说明 827352