Digital twin-driven surface roughness prediction and process parameter adaptive optimization

机械加工 表面粗糙度 过程(计算) 粒子群优化 可预测性 刀具磨损 人工神经网络 过程变量 计算机科学 工程类 机械工程 人工智能 机器学习 数学 材料科学 操作系统 复合材料 统计
作者
Lilan Liu,Xiangyu Zhang,Xiang Wan,Shuaichang Zhou,Zenggui Gao
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:51: 101470-101470 被引量:69
标识
DOI:10.1016/j.aei.2021.101470
摘要

In the process of parts machining, the real-time state of equipment such as tool wear will change dynamically with the cutting process, and then affect the surface roughness of parts. The traditional process parameter optimization method is difficult to take into account the uncertain factors in the machining process, and cannot meet the requirements of real-time and predictability of process parameter optimization in intelligent manufacturing. To solve this problem, a digital twin-driven surface roughness prediction and process parameter adaptive optimization method is proposed. Firstly, a digital twin containing machining elements is constructed to monitor the machining process in real-time and serve as a data source for process parameter optimization; Then IPSO-GRNN (Improved Particle Swarm Optimization-Generalized Regression Neural Networks) prediction model is constructed to realize tool wear prediction and surface roughness prediction based on data; Finally, when the surface roughness predicted based on the real-time data fails to meet the processing requirements, the digital twin system will warn and perform adaptive optimization of cutting parameters based on the currently predicted tool wear. Through the development of a process-optimized digital twin system and a large number of cutting tests, the effectiveness and advancement of the method proposed in this paper are verified. The organic combination of real-time monitoring, accurate prediction, and optimization decision-making in the machining process is realized which solves the problem of inconsistency between quality and efficiency of the machining process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GQ发布了新的文献求助10
1秒前
1秒前
3秒前
燕儿完成签到,获得积分10
3秒前
点凌蝶完成签到,获得积分10
3秒前
魔幻的雪卉完成签到,获得积分10
4秒前
kajimi完成签到,获得积分10
4秒前
Alexander L完成签到,获得积分10
5秒前
5秒前
5秒前
乌云乌云快走开完成签到,获得积分10
5秒前
WWW发布了新的文献求助10
6秒前
好奇的书蛋完成签到,获得积分10
6秒前
All完成签到,获得积分10
6秒前
香蕉觅云应助人机采纳,获得10
7秒前
7秒前
难啊难发布了新的文献求助10
7秒前
stan完成签到,获得积分10
7秒前
8秒前
8秒前
西柚完成签到,获得积分10
8秒前
gaga完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
gzf完成签到 ,获得积分20
9秒前
10秒前
尼克11发布了新的文献求助10
10秒前
Owen应助阮阮采纳,获得10
10秒前
10秒前
花开富贵发布了新的文献求助10
10秒前
bb完成签到,获得积分10
11秒前
Winner2019完成签到,获得积分10
12秒前
12秒前
12秒前
大地完成签到,获得积分10
12秒前
态度发布了新的文献求助10
12秒前
hkh发布了新的文献求助10
13秒前
听闻发布了新的文献求助10
13秒前
13秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827576
求助须知:如何正确求助?哪些是违规求助? 3369839
关于积分的说明 10458603
捐赠科研通 3089626
什么是DOI,文献DOI怎么找? 1699982
邀请新用户注册赠送积分活动 817573
科研通“疑难数据库(出版商)”最低求助积分说明 770271