Characterization of cathode-electrolyte interface in all-solid-state batteries using TOF-SIMS, XPS, and UPS/LEIPS

X射线光电子能谱 阴极 电解质 化学状态 内阻 化学能 材料科学 紫外光电子能谱 电池(电) 分析化学(期刊) 电极 化学 化学工程 物理化学 量子力学 物理 工程类 功率(物理) 色谱法 有机化学
作者
Shin-ichi Iida,Masahiro Terashima,Kazutoshi Mamiya,Hsun-Yun Chang,Shunsuke Sasaki,Atsuo Ono,Takahito Kimoto,Takuya Miyayama
出处
期刊:Journal of vacuum science and technology [American Vacuum Society]
卷期号:39 (4): 044001-044001 被引量:5
标识
DOI:10.1116/6.0001044
摘要

In recent years, all-solid-state batteries (ASSBs) have been attracting attention as the next generation batteries for electric vehicles, energy storage systems, etc. Despite the growing interest, there are still many challenges faced in the commercial use of ASSBs. One of the biggest issues is the internal resistance, especially generated at the interface between solid electrolyte and electrode. The internal resistance at the interface limits the charge-discharge cycling performances. In order to solve this issue, it is necessary to examine the chemical and physical interactions at the interface. In this study, we have performed a detailed characterization of a LiPON/LiCoO2 interface using time-of-flight secondary ion mass spectrometry, x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and low-energy inverse photoelectron spectroscopy to obtain information on chemical species, chemical compositions, chemical states, and energy band diagrams. These powerful techniques have revealed that an interlayer between LiPON and LiCoO2 was formed due to the temperature rise during the manufacturing process. The temperature rise caused a change of the LiPON network structure and stimulated Co reduction in the LiCoO2 layer near the interface. Energy band diagram analysis suggests that the electron diffusion from LiPON to LiCoO2 may have triggered the reduction of Co. We concluded that the chemical changes that occur at the interface caused an increase in interfacial impedance. Preventing the chemical reduction of Co would be a key to minimize the internal resistance. In this article, the detailed chemical interactions between the LiPON and LiCoO2 layers will be discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CA完成签到,获得积分10
1秒前
宁学者发布了新的文献求助10
1秒前
chcmuer发布了新的文献求助10
2秒前
2秒前
Gc发布了新的文献求助10
3秒前
刘七七努力搞科研完成签到,获得积分20
4秒前
4秒前
积极的雁凡关注了科研通微信公众号
5秒前
sp发布了新的文献求助10
7秒前
pumpkin应助无敌鱼采纳,获得10
7秒前
8秒前
8秒前
健壮的友安完成签到 ,获得积分10
9秒前
朴素海亦发布了新的文献求助30
11秒前
Gc完成签到,获得积分10
12秒前
小慧儿应助文件撤销了驳回
12秒前
13秒前
张振宇发布了新的文献求助10
13秒前
physicalproblem应助xiaxia采纳,获得10
17秒前
kkk完成签到,获得积分10
19秒前
Singularity应助zzz采纳,获得10
20秒前
20秒前
王小能完成签到,获得积分10
21秒前
21秒前
英俊的铭应助sp采纳,获得10
22秒前
源源发布了新的文献求助10
22秒前
Kk完成签到,获得积分10
24秒前
汉堡包应助小墨采纳,获得10
26秒前
26秒前
sp完成签到,获得积分10
32秒前
互助遵法尚德应助源源采纳,获得10
32秒前
32秒前
33秒前
36秒前
科研通AI2S应助敬你的沉默采纳,获得10
37秒前
沉默的含巧完成签到,获得积分10
37秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
39秒前
orixero应助qiuqiu采纳,获得20
40秒前
懵懂小尉发布了新的文献求助30
40秒前
1234完成签到,获得积分10
40秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2481776
求助须知:如何正确求助?哪些是违规求助? 2144384
关于积分的说明 5469750
捐赠科研通 1866895
什么是DOI,文献DOI怎么找? 927899
版权声明 563039
科研通“疑难数据库(出版商)”最低求助积分说明 496404