Prediction and Risk Stratification of Kidney Outcomes in IgA Nephropathy

医学 肾脏疾病 内科学 肾功能 肾病 回顾性队列研究 比例危险模型 队列 逻辑回归 糖尿病 内分泌学
作者
Tingyu Chen,Xiang Li,Yingxue Li,Eryu Xia,Yong Qin,Shaoshan Liang,Feng Xu,Dandan Liang,Caihong Zeng,Zhihong Liu
出处
期刊:American Journal of Kidney Diseases [Elsevier BV]
卷期号:74 (3): 300-309 被引量:153
标识
DOI:10.1053/j.ajkd.2019.02.016
摘要

Rationale & Objective Immunoglobulin A nephropathy (IgAN) is common worldwide and has heterogeneous phenotypes. Predicting long-term outcomes and stratifying risk are important for clinical decision making and designing future clinical trials. Study Design Multicenter retrospective cohort study of 2,047 patients with IgAN. Setting & Participants Derivation and validation cohorts composed of 1,022 Chinese patients with IgAN from a single center and 1,025 patients with IgAN from 18 renal centers, respectively. Predictors 36 characteristics, including demographic, clinical, and pathologic variables. Outcomes Combined event of end-stage kidney disease or 50% reduction in estimated glomerular filtration rate within 5 years after diagnostic kidney biopsy. Analytical Approach A gradient tree boosting method implemented in the eXtreme Gradient Boosting (XGBoost) system was used to select the 10 most important variables from 36 candidate variables. Stepwise Cox regression analysis was used to derive a simplified scoring scale model (SSM) based on these 10 variables. Model discrimination and calibration were assessed using the C statistic and Hosmer-Lemeshow test. Risk stratification of the SSM was evaluated using Kaplan-Meier analysis. Results In the derivation and validation cohorts, 74 and 114 patients reached the outcome, respectively. XGBoost predicted the outcome with a C statistic of 0.84 (95% CI, 0.80-0.88) for the validation cohort. The SSM included 3 variables: urine protein excretion, global sclerosis, and tubular atrophy/interstitial fibrosis. Using Kaplan-Meier analysis, the SSM identified significant risk stratification (P < 0.001). Limitations Retrospective study design, application for other ethnic groups needs to be verified. Conclusions A prediction model using routinely available characteristics and based on the combination of a machine learning algorithm and survival analysis can stratify risk for kidney disease progression in the setting of IgAN. An online calculator, the Nanjing IgAN Risk Stratification System, permits easy implementation of this model. Immunoglobulin A nephropathy (IgAN) is common worldwide and has heterogeneous phenotypes. Predicting long-term outcomes and stratifying risk are important for clinical decision making and designing future clinical trials. Multicenter retrospective cohort study of 2,047 patients with IgAN. Derivation and validation cohorts composed of 1,022 Chinese patients with IgAN from a single center and 1,025 patients with IgAN from 18 renal centers, respectively. 36 characteristics, including demographic, clinical, and pathologic variables. Combined event of end-stage kidney disease or 50% reduction in estimated glomerular filtration rate within 5 years after diagnostic kidney biopsy. A gradient tree boosting method implemented in the eXtreme Gradient Boosting (XGBoost) system was used to select the 10 most important variables from 36 candidate variables. Stepwise Cox regression analysis was used to derive a simplified scoring scale model (SSM) based on these 10 variables. Model discrimination and calibration were assessed using the C statistic and Hosmer-Lemeshow test. Risk stratification of the SSM was evaluated using Kaplan-Meier analysis. In the derivation and validation cohorts, 74 and 114 patients reached the outcome, respectively. XGBoost predicted the outcome with a C statistic of 0.84 (95% CI, 0.80-0.88) for the validation cohort. The SSM included 3 variables: urine protein excretion, global sclerosis, and tubular atrophy/interstitial fibrosis. Using Kaplan-Meier analysis, the SSM identified significant risk stratification (P < 0.001). Retrospective study design, application for other ethnic groups needs to be verified. A prediction model using routinely available characteristics and based on the combination of a machine learning algorithm and survival analysis can stratify risk for kidney disease progression in the setting of IgAN. An online calculator, the Nanjing IgAN Risk Stratification System, permits easy implementation of this model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助Ryy采纳,获得10
1秒前
入暖完成签到,获得积分10
1秒前
泽锦臻完成签到 ,获得积分10
8秒前
专注的胡萝卜完成签到 ,获得积分10
11秒前
wq完成签到,获得积分10
20秒前
20秒前
li完成签到,获得积分10
22秒前
26秒前
沉默的红牛完成签到 ,获得积分10
26秒前
天天快乐应助坤坤采纳,获得10
28秒前
NexusExplorer应助黄凯采纳,获得10
29秒前
领导范儿应助msli采纳,获得10
34秒前
34秒前
顾矜应助枫也采纳,获得10
34秒前
34秒前
BUCI完成签到,获得积分10
35秒前
风趣的绮菱完成签到,获得积分10
39秒前
robin_1217完成签到,获得积分10
40秒前
gao_yiyi应助鑫搭采纳,获得20
41秒前
41秒前
BUCI发布了新的文献求助10
41秒前
小蘑菇应助哈哈哈哈哈采纳,获得10
42秒前
42秒前
Amo应助SU采纳,获得10
42秒前
健壮的绿凝完成签到,获得积分10
43秒前
许金钗完成签到,获得积分10
44秒前
hahhhah完成签到 ,获得积分10
44秒前
45秒前
王明新完成签到,获得积分10
46秒前
msli发布了新的文献求助10
46秒前
47秒前
海天使完成签到,获得积分10
47秒前
汉堡包应助赵鑫雅采纳,获得10
48秒前
鹿冶完成签到 ,获得积分10
48秒前
49秒前
49秒前
咖啡先生发布了新的文献求助10
49秒前
鑫搭完成签到,获得积分10
50秒前
51秒前
皮皮鲁完成签到,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976