亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction and Risk Stratification of Kidney Outcomes in IgA Nephropathy

医学 肾脏疾病 内科学 肾功能 肾病 回顾性队列研究 比例危险模型 队列 逻辑回归 糖尿病 内分泌学
作者
Tingyu Chen,Xiang Li,Yingxue Li,Eryu Xia,Yong Qin,Shaoshan Liang,Feng Xu,Dandan Liang,Caihong Zeng,Zhihong Liu
出处
期刊:American Journal of Kidney Diseases [Elsevier BV]
卷期号:74 (3): 300-309 被引量:153
标识
DOI:10.1053/j.ajkd.2019.02.016
摘要

Rationale & Objective Immunoglobulin A nephropathy (IgAN) is common worldwide and has heterogeneous phenotypes. Predicting long-term outcomes and stratifying risk are important for clinical decision making and designing future clinical trials. Study Design Multicenter retrospective cohort study of 2,047 patients with IgAN. Setting & Participants Derivation and validation cohorts composed of 1,022 Chinese patients with IgAN from a single center and 1,025 patients with IgAN from 18 renal centers, respectively. Predictors 36 characteristics, including demographic, clinical, and pathologic variables. Outcomes Combined event of end-stage kidney disease or 50% reduction in estimated glomerular filtration rate within 5 years after diagnostic kidney biopsy. Analytical Approach A gradient tree boosting method implemented in the eXtreme Gradient Boosting (XGBoost) system was used to select the 10 most important variables from 36 candidate variables. Stepwise Cox regression analysis was used to derive a simplified scoring scale model (SSM) based on these 10 variables. Model discrimination and calibration were assessed using the C statistic and Hosmer-Lemeshow test. Risk stratification of the SSM was evaluated using Kaplan-Meier analysis. Results In the derivation and validation cohorts, 74 and 114 patients reached the outcome, respectively. XGBoost predicted the outcome with a C statistic of 0.84 (95% CI, 0.80-0.88) for the validation cohort. The SSM included 3 variables: urine protein excretion, global sclerosis, and tubular atrophy/interstitial fibrosis. Using Kaplan-Meier analysis, the SSM identified significant risk stratification (P < 0.001). Limitations Retrospective study design, application for other ethnic groups needs to be verified. Conclusions A prediction model using routinely available characteristics and based on the combination of a machine learning algorithm and survival analysis can stratify risk for kidney disease progression in the setting of IgAN. An online calculator, the Nanjing IgAN Risk Stratification System, permits easy implementation of this model. Immunoglobulin A nephropathy (IgAN) is common worldwide and has heterogeneous phenotypes. Predicting long-term outcomes and stratifying risk are important for clinical decision making and designing future clinical trials. Multicenter retrospective cohort study of 2,047 patients with IgAN. Derivation and validation cohorts composed of 1,022 Chinese patients with IgAN from a single center and 1,025 patients with IgAN from 18 renal centers, respectively. 36 characteristics, including demographic, clinical, and pathologic variables. Combined event of end-stage kidney disease or 50% reduction in estimated glomerular filtration rate within 5 years after diagnostic kidney biopsy. A gradient tree boosting method implemented in the eXtreme Gradient Boosting (XGBoost) system was used to select the 10 most important variables from 36 candidate variables. Stepwise Cox regression analysis was used to derive a simplified scoring scale model (SSM) based on these 10 variables. Model discrimination and calibration were assessed using the C statistic and Hosmer-Lemeshow test. Risk stratification of the SSM was evaluated using Kaplan-Meier analysis. In the derivation and validation cohorts, 74 and 114 patients reached the outcome, respectively. XGBoost predicted the outcome with a C statistic of 0.84 (95% CI, 0.80-0.88) for the validation cohort. The SSM included 3 variables: urine protein excretion, global sclerosis, and tubular atrophy/interstitial fibrosis. Using Kaplan-Meier analysis, the SSM identified significant risk stratification (P < 0.001). Retrospective study design, application for other ethnic groups needs to be verified. A prediction model using routinely available characteristics and based on the combination of a machine learning algorithm and survival analysis can stratify risk for kidney disease progression in the setting of IgAN. An online calculator, the Nanjing IgAN Risk Stratification System, permits easy implementation of this model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sandy完成签到,获得积分10
20秒前
39秒前
Mango发布了新的文献求助10
44秒前
58秒前
1分钟前
1分钟前
1分钟前
muhum完成签到 ,获得积分10
1分钟前
youyou完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
天天快乐应助Mango采纳,获得10
1分钟前
2分钟前
叶上栀了完成签到,获得积分10
2分钟前
2分钟前
reerwt发布了新的文献求助10
2分钟前
李健的小迷弟应助reerwt采纳,获得10
2分钟前
2分钟前
研友_ng92Y8发布了新的文献求助10
2分钟前
reerwt完成签到,获得积分20
2分钟前
研友_ng92Y8完成签到,获得积分10
3分钟前
3分钟前
脑洞疼应助supermaltose采纳,获得30
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
MYZ完成签到,获得积分10
3分钟前
3分钟前
Mango发布了新的文献求助10
3分钟前
3分钟前
Emperor完成签到 ,获得积分0
3分钟前
Lignin应助Mango采纳,获得10
4分钟前
4分钟前
4分钟前
Lignin应助太叔道罡采纳,获得10
4分钟前
4分钟前
4分钟前
supermaltose发布了新的文献求助30
4分钟前
许安完成签到 ,获得积分20
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924372
求助须知:如何正确求助?哪些是违规求助? 3469104
关于积分的说明 10955095
捐赠科研通 3198461
什么是DOI,文献DOI怎么找? 1767207
邀请新用户注册赠送积分活动 856696
科研通“疑难数据库(出版商)”最低求助积分说明 795597