神经形态工程学
计算机科学
Spike(软件开发)
峰值时间相关塑性
人工智能
人工神经网络
过程(计算)
期限(时间)
机器学习
尖峰神经网络
分析
非线性系统
突触可塑性
数据科学
软件工程
操作系统
物理
量子力学
受体
化学
生物化学
作者
Timoleon Moraitis,Abu Sebastian,Evangelos Eleftheriou
出处
期刊:IEEE Nanotechnology Magazine
[Institute of Electrical and Electronics Engineers]
日期:2018-07-16
卷期号:12 (3): 45-53
被引量:19
标识
DOI:10.1109/mnano.2018.2845479
摘要
Neural networks (NNs) have been able to provide record-breaking performance in several machine-learning tasks, such as image and speech recognition, natural-language processing, playing complex games, and data analytics for scientific or business purposes [1]. They process their inputs through a series of linear and nonlinear operations and use learning algorithms, i.e., rules that optimize the parameters of the network.
科研通智能强力驱动
Strongly Powered by AbleSci AI