An LSTM-Based Method with Attention Mechanism for Travel Time Prediction

计算机科学 机制(生物学) 期限(时间) 人工神经网络 构造(python库) 人工智能 树(集合论) 短时记忆 时间序列 机器学习 循环神经网络 任务(项目管理) 短时记忆 工作记忆 工程类 认知 数学分析 哲学 物理 认识论 神经科学 生物 程序设计语言 系统工程 量子力学 数学
作者
Xiangdong Ran,Zhiguang Shan,Yufei Fang,Lin Chen
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:19 (4): 861-861 被引量:85
标识
DOI:10.3390/s19040861
摘要

Traffic prediction is based on modeling the complex non-linear spatiotemporal traffic dynamics in road network. In recent years, Long Short-Term Memory has been applied to traffic prediction, achieving better performance. The existing Long Short-Term Memory methods for traffic prediction have two drawbacks: they do not use the departure time through the links for traffic prediction, and the way of modeling long-term dependence in time series is not direct in terms of traffic prediction. Attention mechanism is implemented by constructing a neural network according to its task and has recently demonstrated success in a wide range of tasks. In this paper, we propose an Long Short-Term Memory-based method with attention mechanism for travel time prediction. We present the proposed model in a tree structure. The proposed model substitutes a tree structure with attention mechanism for the unfold way of standard Long Short-Term Memory to construct the depth of Long Short-Term Memory and modeling long-term dependence. The attention mechanism is over the output layer of each Long Short-Term Memory unit. The departure time is used as the aspect of the attention mechanism and the attention mechanism integrates departure time into the proposed model. We use AdaGrad method for training the proposed model. Based on the datasets provided by Highways England, the experimental results show that the proposed model can achieve better accuracy than the Long Short-Term Memory and other baseline methods. The case study suggests that the departure time is effectively employed by using attention mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分10
刚刚
1秒前
111发布了新的文献求助10
2秒前
qwdg发布了新的文献求助10
2秒前
白糖完成签到,获得积分10
2秒前
李健应助mimi采纳,获得30
3秒前
CAOHOU应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
整齐千柳发布了新的文献求助10
6秒前
12umi发布了新的文献求助10
6秒前
绿绿发布了新的文献求助10
7秒前
8秒前
开心幻巧完成签到,获得积分10
9秒前
9秒前
就不吃菜菜完成签到,获得积分10
9秒前
VENTUS发布了新的文献求助10
9秒前
9秒前
Lucas应助整齐千柳采纳,获得10
10秒前
科研通AI5应助Miya_han采纳,获得100
10秒前
11秒前
完美世界应助yb采纳,获得10
11秒前
12秒前
π1发布了新的文献求助10
12秒前
12秒前
卡卡西应助Song.X.S采纳,获得10
13秒前
13秒前
楼一笑完成签到,获得积分10
15秒前
青旋完成签到,获得积分20
15秒前
CipherSage应助ttl采纳,获得10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802485
求助须知:如何正确求助?哪些是违规求助? 3348111
关于积分的说明 10336668
捐赠科研通 3064039
什么是DOI,文献DOI怎么找? 1682365
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997