正交异性材料
均质化(气候)
复合材料
材料科学
弹性(物理)
各向同性
代表性基本卷
张量(固有定义)
环氧树脂
超声波传感器
有限元法
数学
结构工程
微观结构
几何学
声学
物理
工程类
生物多样性
生物
量子力学
生态学
作者
Ruben Sevenois,Siebe Spronk,David Garoz Gómez,Francisco Antonio Gilabert Villegas,Erik Verboven,Mathias Kersemans,Wim Van Paepegem
出处
期刊:Ghent University - Ghent University Academic Bibliography
日期:2018-01-01
摘要
Multiscale modeling techniques for composites require input for the mechanical properties of the constituent materials (fibres and matrix). The transverse elastic properties of the fibres are often unknown because no test standard exists to determine them. One can, however, reverse engineer the fibre properties from the 3D homogenized elastic tensor of the unidirectional (UD) material. The full 3D orthotropic elasticity tensor of the UD material (carbon/epoxy) and matrix is obtained through ultrasonic insonificiation. Next, this homogenized elastic tensor is used to reverse engineer the transverse isotropic elastic tensor of the carbon fibres. To this end, 4 homogenization methods are explored: 2 analytical (Mori-Tanaka, Mori-Tanaka-Lielens), 1 semi-empirical (Chamis) and 1 finite-element (FE) (a micro-scale repetitive unit cell) homogenization method. Subsequently, the fibre properties are used to predict the elasticity tensor of UD plies with multiple fibre volume fractions. These are then used for the yarns in a meso-scale FEmodel of a plain woven material. The predicted elastic response is compared to the experimental one. The predicted and measured properties are in good agreement. It is shown that virtual identification and prediction of mechanical properties for woven plies is realistic.
科研通智能强力驱动
Strongly Powered by AbleSci AI