机器翻译
计算机科学
判决
自然语言处理
翻译(生物学)
背景(考古学)
人工智能
任务(项目管理)
编码器
代表(政治)
基于实例的机器翻译
语音识别
操作系统
古生物学
信使核糖核酸
经济
化学
管理
法学
基因
政治
生物
生物化学
政治学
作者
Longyue Wang,Zhaopeng Tu,Andy Way,Qun Liu
摘要
In translation, considering the document as a whole can help to resolve ambiguities and inconsistencies. In this paper, we propose a cross-sentence context-aware approach and investigate the influence of historical contextual information on the performance of neural machine translation (NMT). First, this history is summarized in a hierarchical way. We then integrate the historical representation into NMT in two strategies: 1) a warm-start of encoder and decoder states, and 2) an auxiliary context source for updating decoder states. Experimental results on a large Chinese-English translation task show that our approach significantly improves upon a strong attention-based NMT system by up to +2.1 BLEU points.
科研通智能强力驱动
Strongly Powered by AbleSci AI