材料科学
天然橡胶
复合材料
纳米复合材料
碳纳米管
硫化
差示扫描量热法
固化(化学)
复合数
炭黑
热稳定性
动态力学分析
聚合物
化学工程
热力学
物理
工程类
作者
Gang Sui,W.H. Zhong,Xin Yang,Yong Yu,Shuang Zhao
摘要
Abstract In order to achieve dramatic improvements in the performance of rubber materials, the development of carbon nanotube (CNT)‐reinforced rubber composites was attempted. The CNT/natural rubber (NR) nanocomposite was prepared through solvent mixing on the basis of pretreatment of CNTs. Thermal properties, vulcanization characteristics, and physical and mechanical properties of the CNT/NR nanocomposites were characterized in contrast to the carbon black (CB)/NR composite. Through the addition of the CNTs treated using acid bath followed by ball milling with HRH (hydrated silica, resorcinol, and hexamethylene tetramine) bonding systems, the crystallization melting peak in differential scanning calorimetry (DSC) curves of NR weakened and the curing rate of NR slightly decreased. Meanwhile, the over‐curing reversion of CNT/NR nanocomposites was alleviated. The dispersion of the treated CNTs in the rubber matrix and interfacial bonding between them were rather good. The mechanical properties of the CNT‐reinforced NR showed a considerable increase compared to the neat NR and traditional CB/NR composite. At the same time, the CNT/NR nanocomposites exhibited better rebound resilience and dynamic compression properties. The storage modulus of the CNT/NR nanocomposites greatly exceeds that of neat NR and CB/NR composites under all temperature regions. The thermal stability of NR was also obviously improved with the addition of the treated CNTs. Copyright © 2008 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI