An Enhanced Artificial Ecosystem-Based Optimization for Optimal Allocation of Multiple Distributed Generations

资源配置 粒子群优化 多目标优化
作者
Ahmad Eid,Salah Kamel,Ahmed Korashy,Tahir Khurshaid
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 178493-178513 被引量:10
标识
DOI:10.1109/access.2020.3027654
摘要

Optimal allocation of distributed generations (DGs) is vital to the proper operation of the distribution systems, which leads to power loss minimization and acceptable voltage regulation. In this paper, an Enhanced Artificial Ecosystem-based Optimization (EAEO) algorithm is proposed and used to solve the optimization problem of DG allocations to minimize the power loss in distribution systems. In the suggested algorithm, the search space is reduced using operator G and sine-cosine function. The G-operator affects the balance between explorative and exploitative phases. At the same time, it gradually decreases during the iterative process in order to converge to the optimal global solutions. On the other hand, the sine-cosine function creates different and random solutions. The EAEO algorithm is applied for solving the standard 33-bus 69-bus, and 119-bus distribution systems with the aim of minimizing the total power losses. Multiple DG units operating at various power factors, including unity-, fixed-, and optimal-power factors, are considered. Both single and multiple objectives are considered to minimize the total voltage deviation (TVD), maximize the system stability, and reduce the total power losses. The obtained results are compared with those obtained by the AEO and other algorithms. The results demonstrate a significant reduction of total power losses and improvement of the voltage profile of the network, especially for the DGs operating at their optimal power factors. Comparisons show the dominance of the proposed EAEO algorithm against other analytical, metaheuristic, or hybrid algorithms. Moreover, the EAEO outperforms the original AEO algorithm with a faster convergence speed and better system performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小六九发布了新的文献求助10
刚刚
1秒前
1秒前
情怀应助瞌睡的小付采纳,获得10
2秒前
马海完成签到,获得积分10
2秒前
HIKING完成签到,获得积分10
2秒前
4秒前
4秒前
上官若男应助陈夜梦采纳,获得10
4秒前
昏睡的蟠桃应助dis采纳,获得50
5秒前
范范完成签到,获得积分10
5秒前
wanci应助小希采纳,获得10
5秒前
dou发布了新的文献求助10
5秒前
娄志昊发布了新的文献求助10
6秒前
神勇狗完成签到,获得积分10
6秒前
wudayong完成签到,获得积分10
6秒前
iNk应助wuyanzu采纳,获得20
7秒前
8秒前
陈cxz完成签到 ,获得积分10
10秒前
10秒前
隐形曼青应助故里采纳,获得10
10秒前
sunly发布了新的文献求助10
11秒前
慕青应助τ涛采纳,获得10
11秒前
12秒前
哭泣嵩完成签到,获得积分10
14秒前
西行龟发布了新的文献求助10
16秒前
科研通AI5应助黄黄采纳,获得10
16秒前
qzaima发布了新的文献求助10
16秒前
bkagyin应助ardejiang采纳,获得10
17秒前
17秒前
18秒前
19秒前
20秒前
aa应助壮观的裙子采纳,获得10
20秒前
孔乙己发布了新的文献求助10
20秒前
22秒前
nnnny发布了新的文献求助10
22秒前
桃花嫣然完成签到,获得积分10
24秒前
科研通AI5应助西行龟采纳,获得30
25秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817421
求助须知:如何正确求助?哪些是违规求助? 3360775
关于积分的说明 10409208
捐赠科研通 3078870
什么是DOI,文献DOI怎么找? 1690820
邀请新用户注册赠送积分活动 814169
科研通“疑难数据库(出版商)”最低求助积分说明 768060