From local explanations to global understanding with explainable AI for trees

计算机科学
作者
Scott Lundberg,Gabriel Erion,Hugh Chen,Alex J. DeGrave,Jordan M. Prutkin,Bala G. Nair,Ronit Katz,Jonathan Himmelfarb,Nisha Bansal,Su‐In Lee
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (1): 56-67 被引量:5080
标识
DOI:10.1038/s42256-019-0138-9
摘要

Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nonlinear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here we improve the interpretability of tree-based models through three main contributions. (1) A polynomial time algorithm to compute optimal explanations based on game theory. (2) A new type of explanation that directly measures local feature interaction effects. (3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to (1) identify high-magnitude but low-frequency nonlinear mortality risk factors in the US population, (2) highlight distinct population subgroups with shared risk characteristics, (3) identify nonlinear interaction effects among risk factors for chronic kidney disease and (4) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model's performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. Tree-based machine learning models are widely used in domains such as healthcare, finance and public services. The authors present an explanation method for trees that enables the computation of optimal local explanations for individual predictions, and demonstrate their method on three medical datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lijianguo完成签到,获得积分10
刚刚
1秒前
2秒前
奇拉维特完成签到 ,获得积分10
3秒前
星辰大海应助abbb采纳,获得10
3秒前
科研小兔发布了新的文献求助10
4秒前
踏实一斩发布了新的文献求助10
5秒前
Sailo发布了新的文献求助10
5秒前
clm完成签到 ,获得积分10
6秒前
7秒前
青橘短衫发布了新的文献求助10
11秒前
dingz完成签到,获得积分10
11秒前
12秒前
大橙子发布了新的文献求助10
18秒前
花无双完成签到,获得积分0
19秒前
南北完成签到,获得积分10
22秒前
Felicity完成签到 ,获得积分10
25秒前
华仔应助bqss采纳,获得10
25秒前
哈哈客完成签到,获得积分10
26秒前
风筝鱼完成签到 ,获得积分10
27秒前
魔法师完成签到,获得积分0
28秒前
脑洞疼应助沉默的板凳采纳,获得10
29秒前
mmd完成签到 ,获得积分10
30秒前
是小越啊完成签到,获得积分10
30秒前
33秒前
阮大帅气发布了新的文献求助10
36秒前
活泼新儿完成签到 ,获得积分10
43秒前
爱听歌半山完成签到,获得积分10
45秒前
49秒前
wy.he应助科研通管家采纳,获得10
49秒前
Hello应助科研通管家采纳,获得10
50秒前
Lucas应助科研通管家采纳,获得10
50秒前
pluto应助爱学习的太阳采纳,获得20
50秒前
wy.he应助科研通管家采纳,获得10
50秒前
pluto应助科研通管家采纳,获得10
50秒前
Misea发布了新的文献求助10
50秒前
tutulunzi完成签到,获得积分0
50秒前
完美世界应助谨慎的擎宇采纳,获得30
50秒前
如意完成签到,获得积分10
51秒前
思源应助Shining_Wu采纳,获得10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549