From local explanations to global understanding with explainable AI for trees

计算机科学
作者
Scott Lundberg,Gabriel Erion,Hugh Chen,Alex J. DeGrave,Jordan M. Prutkin,Bala G. Nair,Ronit Katz,Jonathan Himmelfarb,Nisha Bansal,Su‐In Lee
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (1): 56-67 被引量:5448
标识
DOI:10.1038/s42256-019-0138-9
摘要

Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nonlinear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here we improve the interpretability of tree-based models through three main contributions. (1) A polynomial time algorithm to compute optimal explanations based on game theory. (2) A new type of explanation that directly measures local feature interaction effects. (3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to (1) identify high-magnitude but low-frequency nonlinear mortality risk factors in the US population, (2) highlight distinct population subgroups with shared risk characteristics, (3) identify nonlinear interaction effects among risk factors for chronic kidney disease and (4) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model's performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. Tree-based machine learning models are widely used in domains such as healthcare, finance and public services. The authors present an explanation method for trees that enables the computation of optimal local explanations for individual predictions, and demonstrate their method on three medical datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
shengyufen发布了新的文献求助10
2秒前
华仔应助Labubububu采纳,获得10
3秒前
xcg1010发布了新的文献求助10
3秒前
感动一江关注了科研通微信公众号
4秒前
4秒前
搜集达人应助无所谓666采纳,获得10
4秒前
4秒前
4秒前
所所应助喈喈青鸟采纳,获得10
5秒前
5秒前
小蜗妞妞发布了新的文献求助10
5秒前
5秒前
6秒前
深情安青应助游茏采纳,获得10
7秒前
yaoyao发布了新的文献求助10
8秒前
动听的芷蕾完成签到,获得积分20
8秒前
8秒前
唐卟哩钵完成签到,获得积分10
8秒前
9秒前
Cathy完成签到,获得积分10
9秒前
施耐德发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
李俊枫完成签到,获得积分10
10秒前
Ava应助xhj采纳,获得10
10秒前
12秒前
思源应助yaoyao采纳,获得10
12秒前
娄心昊发布了新的文献求助10
12秒前
12秒前
彭于晏应助高贵的画笔采纳,获得10
13秒前
juphen2发布了新的文献求助10
13秒前
Lucas应助哈喽采纳,获得30
14秒前
单纯夏烟完成签到,获得积分10
15秒前
15秒前
shengyufen完成签到,获得积分10
16秒前
科研通AI2S应助zake采纳,获得10
17秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916140
求助须知:如何正确求助?哪些是违规求助? 3461652
关于积分的说明 10918265
捐赠科研通 3188510
什么是DOI,文献DOI怎么找? 1762665
邀请新用户注册赠送积分活动 853030
科研通“疑难数据库(出版商)”最低求助积分说明 793613