Predictive analytics in information systems research

预测能力 预测分析 解释力 计算机科学 分析 实证研究 背景(考古学) 数据科学 可预测性 统计推断 预测建模 计量经济学 统计假设检验 机器学习 数据挖掘 统计 经济 数学 古生物学 哲学 认识论 生物
作者
Galit Shmueli,Otto Koppius
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:35 (3): 553-572 被引量:433
标识
DOI:10.5555/2208923.2208926
摘要

This research essay highlights the need to integrate predictive analytics into information systems research and shows several concrete ways in which this goal can be accomplished. Predictive analytics include empirical methods (statistical and other) that generate data predictions as well as methods for assessing predictive power. Predictive analytics not only assist in creating practically useful models, they also play an important role alongside explanatory modeling in theory building and theory testing. We describe six roles for predictive analytics: new theory generation, measurement development, comparison of competing theories, improvement of existing models, relevance assessment, and assessment of the predictability of empirical phenomena. Despite the importance of predictive analytics, we find that they are rare in the empirical IS literature. Extant IS literature relies nearly exclusively on explanatory statistical modeling, where statistical inference is used to test and evaluate the explanatory power of underlying causal models, and predictive power is assumed to follow automatically from the explanatory model. However, explanatory power does not imply predictive power and thus predictive analytics are necessary for assessing predictive power and for building empirical models that predict well. To show that predictive analytics and explanatory statistical modeling are fundamentally disparate, we show that they are different in each step of the modeling process. These differences translate into different final models, so that a pure explanatory statistical model is best tuned for testing causal hypotheses and a pure predictive model is best in terms of predictive power. We convert a well-known explanatory paper on TAM to a predictive context to illustrate these differences and show how predictive analytics can add theoretical and practical value to IS research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁静致远发布了新的文献求助10
刚刚
情怀应助Cheryl采纳,获得10
刚刚
刚刚
Tsuki完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Bonnie完成签到,获得积分10
1秒前
菜鸟完成签到,获得积分20
1秒前
2秒前
2秒前
3秒前
仙乐完成签到,获得积分10
3秒前
3秒前
无私的绿蕊完成签到,获得积分10
3秒前
求知若渴完成签到,获得积分0
3秒前
3秒前
深情安青应助复活采纳,获得10
4秒前
黎黎发布了新的文献求助10
4秒前
束负允三金完成签到,获得积分10
6秒前
聪明的太君完成签到,获得积分20
6秒前
菜鸟发布了新的文献求助10
6秒前
pofeng发布了新的文献求助10
6秒前
6秒前
Distance完成签到,获得积分10
7秒前
7秒前
共享精神应助抹香鲸采纳,获得10
7秒前
7秒前
LEE123完成签到,获得积分10
8秒前
you发布了新的文献求助10
8秒前
科研通AI5应助zarahn采纳,获得10
8秒前
swing完成签到,获得积分10
8秒前
8秒前
8秒前
xiongxiaoli2000完成签到,获得积分10
8秒前
Ukey完成签到,获得积分20
9秒前
rixinsu发布了新的文献求助10
9秒前
ran发布了新的文献求助10
9秒前
飞奔的晶粒完成签到,获得积分10
9秒前
风清扬发布了新的文献求助10
10秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910787
求助须知:如何正确求助?哪些是违规求助? 3456483
关于积分的说明 10889923
捐赠科研通 3182768
什么是DOI,文献DOI怎么找? 1759314
邀请新用户注册赠送积分活动 850819
科研通“疑难数据库(出版商)”最低求助积分说明 792280