转录因子
唑
流出
伊曲康唑
生物
抗药性
遗传学
基因
微生物学
抗真菌
作者
Wenlong Du,Pengfei Zhai,Tingli Wang,Michael Bromley,Yuanwei Zhang,Ling Lü
摘要
The emergence of azole-resistant fungal pathogens has posed a great threat to public health worldwide. Although the molecular mechanism of azole resistance has been extensively investigated, the potential regulators of azole resistance remain largely unexplored. In this study, we identified a new function of the fungal specific C2H2 zinc finger transcription factor SltA (involved in the salt tolerance pathway) in the regulation of azole resistance of the human fungal pathogen Aspergillus fumigatus A lack of SltA results in an itraconazole hypersusceptibility phenotype. Transcriptional profiling combined with LacZ reporter analysis and electrophoretic mobility shift assays (EMSA) demonstrated that SltA is involved in its own transcriptional regulation and also regulates the expression of genes related to ergosterol biosynthesis (erg11A, erg13A, and erg24A) and drug efflux pumps (mdr1, mfsC, and abcE) by directly binding to the conserved 5'-AGGCA-3' motif in their promoter regions, and this binding is dependent on the conserved cysteine and histidine within the C2H2 DNA binding domain of SltA. Moreover, overexpression of erg11A or mdr1 rescues sltA deletion defects under itraconazole conditions, suggesting that erg11A and mdr1 are related to sltA-mediated itraconazole resistance. Most importantly, deletion of SltA in laboratory-derived and clinical azole-resistant isolates significantly attenuates drug resistance. Collectively, we have identified a new function of the transcription factor SltA in regulating azole resistance by coordinately mediating the key azole target Erg11A and the drug efflux pump Mdr1, and targeting SltA may provide a potential strategy for intervention of clinical azole-resistant isolates to improve the efficiency of currently approved antifungal drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI