Debiased Inverse-Variance Weighted Estimator in Two-Sample Summary-Data Mendelian Randomization

孟德尔随机化 估计员 差异(会计) 多效性 选择(遗传算法) 工具变量 统计 计算机科学 数学 生物 人工智能 遗传学 遗传变异 表型 基因 会计 基因型 业务
作者
Ting Ye,Jun Shao,Hyun-Seung Kang
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.1911.09802
摘要

Mendelian randomization (MR) has become a popular approach to study the effect of a modifiable exposure on an outcome by using genetic variants as instrumental variables. A challenge in MR is that each genetic variant explains a relatively small proportion of variance in the exposure and there are many such variants, a setting known as many weak instruments. To this end, we provide a theoretical characterization of the statistical properties of two popular estimators in MR, the inverse-variance weighted (IVW) estimator and the IVW estimator with screened instruments using an independent selection dataset, under many weak instruments. We then propose a debiased IVW estimator, a simple modification of the IVW estimator, that is robust to many weak instruments and doesn't require screening. Additionally, we present two instrument selection methods to improve the efficiency of the new estimator when a selection dataset is available. An extension of the debiased IVW estimator to handle balanced horizontal pleiotropy is also discussed. We conclude by demonstrating our results in simulated and real datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
Ava应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
谨慎的友安完成签到,获得积分10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
肉鸡应助科研通管家采纳,获得10
1秒前
肉鸡应助科研通管家采纳,获得10
1秒前
power完成签到,获得积分20
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
王振兴完成签到 ,获得积分10
1秒前
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
mengtingmei应助科研通管家采纳,获得10
2秒前
mengtingmei应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
lilili应助科研通管家采纳,获得10
2秒前
lilili应助科研通管家采纳,获得10
2秒前
涛zt应助科研通管家采纳,获得10
2秒前
涛zt应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789767
求助须知:如何正确求助?哪些是违规求助? 5723251
关于积分的说明 15475510
捐赠科研通 4917557
什么是DOI,文献DOI怎么找? 2647071
邀请新用户注册赠送积分活动 1594728
关于科研通互助平台的介绍 1549205