A single-loop approach with adaptive sampling and surrogate Kriging for reliability-based design optimization

克里金 替代模型 采样(信号处理) 可靠性(半导体) 数学优化 自适应采样 重要性抽样 计算机科学 蒙特卡罗方法 数学 统计 机器学习 物理 滤波器(信号处理) 量子力学 功率(物理) 计算机视觉
作者
Hongbo Zhang,Younès Aoues,Didier Lemosse,Eduardo Souza de Cursi
出处
期刊:Engineering Optimization [Taylor & Francis]
卷期号:53 (8): 1450-1466 被引量:10
标识
DOI:10.1080/0305215x.2020.1800664
摘要

Surrogate models have been widely used for Reliability-Based Design Optimization (RBDO) to solve complex engineering problems. However, the accuracy and efficiency of surrogate-based RBDO largely rely on the sample size and sampling methods. For this reason, successive sampling methods that update the surrogate successively are more promising. Nowadays, several Kriging-based RBDO approaches have been proposed with different successive sampling techniques. However, these approaches are based on Monte Carlo simulations and double-loop approaches such that most of them would be time consuming for high target reliability levels or high dimensional problems. To improve the efficiency of surrogate-based RBDO, this article proposes a Single-Loop Approach (SLA) combined with the Kriging surrogate. This Kriging model is updated efficiently by using the Most Probable Points (MPPs) from the last SLA iteration. A very simple and effective stopping criterion is proposed. Compared with other sampling methods, the initial Kriging can be started with very few training points and converges to the right optimum very efficiently. Three mathematical examples and a practical engineering problem are used to demonstrate the effectiveness, the advantages and also the limitations of this method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Linly采纳,获得10
1秒前
lumin完成签到,获得积分0
1秒前
LiuJ应助璐璇采纳,获得20
1秒前
clcl发布了新的文献求助10
1秒前
2秒前
3秒前
echo完成签到 ,获得积分10
4秒前
6秒前
7秒前
7秒前
zls发布了新的文献求助10
8秒前
9秒前
9秒前
sasa发布了新的文献求助10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
water应助科研通管家采纳,获得10
12秒前
小樊应助科研通管家采纳,获得30
12秒前
胡无敌应助科研通管家采纳,获得10
12秒前
xjcy应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
费老三应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
xjcy应助科研通管家采纳,获得10
13秒前
xjcy应助科研通管家采纳,获得10
13秒前
胡无敌应助科研通管家采纳,获得10
13秒前
CAOHOU应助科研通管家采纳,获得10
13秒前
CAOHOU应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
打打应助科研通管家采纳,获得10
14秒前
jianglan完成签到,获得积分10
14秒前
14秒前
WenyuChen发布了新的文献求助200
14秒前
14秒前
柒染发布了新的文献求助10
15秒前
ltr发布了新的文献求助10
15秒前
a4dwa46发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4321733
求助须知:如何正确求助?哪些是违规求助? 3838070
关于积分的说明 11999560
捐赠科研通 3478525
什么是DOI,文献DOI怎么找? 1908154
邀请新用户注册赠送积分活动 953511
科研通“疑难数据库(出版商)”最低求助积分说明 854851