Optimizing Ion Pathway in Titanium Carbide MXene for Practical High‐Rate Supercapacitor

材料科学 超级电容器 碳化钛 电容 水平扫描速率 离子 碳化物 高质量 分析化学(期刊) 电极 纳米技术 化学工程 电化学 复合材料 循环伏安法 冶金 物理化学 化学 物理 量子力学 色谱法 天体物理学 工程类
作者
Jun Tang,Tyler S. Mathis,Xiongwei Zhong,Xu Xiao,Hao Wang,Mark Anayee,Feng Pan,Baomin Xu,Yury Gogotsi
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:11 (4) 被引量:233
标识
DOI:10.1002/aenm.202003025
摘要

Abstract The lengthened ion pathway in restacked 2D materials greatly limits the electrochemical performance of practically dense film electrodes (mass loading >10 mg cm −2 ). Typical strategies such as the insertion of nanomaterials and 3D‐structure design is expected to reduce the volumetric capacitance of Ti 3 C 2 T x electrodes, diminishing the dominating advantage of Ti 3 C 2 T x over other electrode materials. Here, a novel, facile, and controllable H 2 SO 4 oxidation method is developed for alleviating the restacking issue of Ti 3 C 2 T x film with few electrochemically inactive side‐products such as TiO 2 . A hierarchical ion path “highway” in Ti 3 C 2 T x film is fabricated with porous structure, atomic‐level increased interlayer spacing, and reduced flake size (through probe‐sonication). As a result, ultra‐high rate performance is obtained with high volumetric capacitance. For a ≈1.1 µm thick Ti 3 C 2 T x film, capacitance retention of 64% is obtained (208 F g −1 /756 F cm −3 ) when the scan rate is increased from 5 to 10,000 mV s −1 . Even at higher mass loadings exceeding 12 mg cm −2 (48 µm thickness), the rate capability is still comparable to unoptimized Ti 3 C 2 T x electrodes with low mass loading (1 mg cm −2 ). Consequently, a high areal capacitance of ≈3.2 F cm −2 is achieved for pathway‐optimized thick Ti 3 C 2 T x film, which is of great significance for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
核桃发布了新的文献求助10
2秒前
领导范儿应助chiron采纳,获得10
3秒前
3秒前
4秒前
梨炒栗子完成签到,获得积分10
4秒前
支援未来发布了新的文献求助10
6秒前
悦耳的扬发布了新的文献求助10
6秒前
辉2关注了科研通微信公众号
7秒前
8秒前
9秒前
陈伟完成签到,获得积分20
9秒前
NexusExplorer应助NanFeng采纳,获得10
9秒前
一颗馒头完成签到,获得积分10
10秒前
unaive完成签到,获得积分10
11秒前
12秒前
微笑发布了新的文献求助10
13秒前
13秒前
研友_Z7mYwL完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
叶叶叶完成签到,获得积分10
20秒前
Jeff完成签到,获得积分10
20秒前
deway发布了新的文献求助10
20秒前
核桃发布了新的文献求助10
21秒前
21秒前
Ch_7完成签到,获得积分10
22秒前
22秒前
合适的初蓝完成签到,获得积分10
22秒前
23秒前
Ning00000完成签到 ,获得积分10
24秒前
YMM发布了新的文献求助10
24秒前
纯真的元风完成签到,获得积分10
28秒前
Feng5945发布了新的文献求助10
28秒前
阿宝完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4912095
求助须知:如何正确求助?哪些是违规求助? 4187304
关于积分的说明 13003664
捐赠科研通 3955373
什么是DOI,文献DOI怎么找? 2168696
邀请新用户注册赠送积分活动 1187211
关于科研通互助平台的介绍 1094459