Two novel online nomograms for predicting the survival of individual patients undergoing partial hepatectomy for huge hepatocellular carcinoma.

医学 列线图 肝细胞癌 肝切除术 内科学 预测模型 肿瘤科 接收机工作特性 胃肠病学
作者
Zixiang Chen,Ming Cai,Xu Wang,Yi Zhou,Jiangming Chen,Qing-song Xie,Yi-jun Zhao,Kun Xie,Qiang Fang,Tian Pu,Dong Jiang,Tao Bai,Jinliang Ma,Xiaoping Geng,Fu-bao Liu
出处
期刊:Hpb [Elsevier BV]
卷期号:23 (8): 1217-1229
标识
DOI:10.1016/j.hpb.2020.12.002
摘要

Abstract Background A method for predicting prognosis of patients who undergo partial hepatectomy for huge hepatocellular carcinoma (HHCC, diameter ≥10 cm) is currently lacking. This study aimed to establish two online nomograms to predict the overall survival (OS) and disease-free survival (DFS) for patients undergoing resection for HHCC. Methods The clinicopathologic characteristics and follow-up information of patients who underwent partial hepatectomy for HHCC at two medical centers were reviewed. Using a training cohort, a Cox model was used to identify the predictors of survival. Two dynamic nomograms for OS and DFS were developed and validated based on the data. Results Eight and nine independent factors derived from the multivariate analysis of the training cohort were screened and incorporated into the nomograms for OS and DFS, respectively. In the training cohort, the nomogram achieved concordance indices (C-indices) of 0.745 and 0.738 in predicting the OS and DFS, respectively. These results were supported by external validation (C-indices: 0.822 for OS and 0.827 for DFS). Further, the calibration curves of the endpoints showed a favorable agreement between the nomograms’ assessments and actual observations. Conclusions The two web-based nomograms demonstrated optimal predictive performance for patients undergoing partial hepatectomy for HHCC. This provides a practical method for a personalized prognosis based on an individual's underlying risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luf完成签到,获得积分10
刚刚
Ethan发布了新的文献求助50
1秒前
2秒前
2秒前
swh发布了新的文献求助10
2秒前
2秒前
宁书竹完成签到,获得积分10
3秒前
forktail发布了新的文献求助10
3秒前
cx发布了新的文献求助10
3秒前
科研通AI6应助科研开门采纳,获得10
4秒前
4秒前
4秒前
爆米花应助qizhixu采纳,获得10
5秒前
灰白完成签到,获得积分10
7秒前
7秒前
7秒前
陈丰滢发布了新的文献求助10
8秒前
畅ECHO发布了新的文献求助10
8秒前
迅速念云完成签到,获得积分20
8秒前
wanci应助浮浮世世采纳,获得10
8秒前
wxt完成签到 ,获得积分10
9秒前
12秒前
单薄的曼安应助sophiemore采纳,获得10
13秒前
一木完成签到,获得积分10
13秒前
tianmengkui发布了新的文献求助10
13秒前
Sugihara发布了新的文献求助50
14秒前
浮生六记发布了新的文献求助10
14秒前
干饭虫应助可心X采纳,获得20
16秒前
18秒前
18秒前
852应助魁梧的火龙果采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
19秒前
zhonglv7应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得20
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
舒馨应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271518
求助须知:如何正确求助?哪些是违规求助? 4429192
关于积分的说明 13787815
捐赠科研通 4307460
什么是DOI,文献DOI怎么找? 2363567
邀请新用户注册赠送积分活动 1359231
关于科研通互助平台的介绍 1322167