Statistical Learning with Sparsity

统计学习 计算机科学 人工智能
作者
Trevor Hastie,Robert Tibshirani,Martin J. Wainwright
出处
期刊:Chapman and Hall/CRC eBooks [Informa]
被引量:1901
标识
DOI:10.1201/b18401
摘要

Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of 1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兮pqsn发布了新的文献求助10
刚刚
Jason完成签到 ,获得积分10
1秒前
景碧空完成签到,获得积分10
1秒前
1秒前
渠安完成签到 ,获得积分10
1秒前
少年完成签到,获得积分10
3秒前
3秒前
小马甲应助Pt-SACs采纳,获得10
4秒前
俞璐发布了新的文献求助10
4秒前
景碧空发布了新的文献求助10
5秒前
今天只做一件事应助daidai采纳,获得10
6秒前
Owen应助紫色奶萨采纳,获得10
6秒前
7秒前
hhh发布了新的文献求助10
7秒前
SunnyZjw发布了新的文献求助10
10秒前
11秒前
自觉紫安发布了新的文献求助10
11秒前
科研通AI5应助zyc采纳,获得10
11秒前
冷傲山彤完成签到,获得积分10
11秒前
dreamsci完成签到 ,获得积分10
18秒前
Owen应助酸萝卜采纳,获得10
18秒前
脑洞疼应助自觉紫安采纳,获得10
19秒前
20秒前
26秒前
大模型应助tcf采纳,获得10
26秒前
27秒前
28秒前
31秒前
33秒前
33秒前
33秒前
酸萝卜完成签到,获得积分10
33秒前
彭于晏应助雅雅采纳,获得10
35秒前
紫色奶萨发布了新的文献求助10
38秒前
威士忌www发布了新的文献求助10
38秒前
搜集达人应助SunnyZjw采纳,获得10
38秒前
39秒前
39秒前
酷波er应助陈可欣采纳,获得10
40秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669