亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nuclear Receptor Subfamily 1 Group D Member 1 Regulates Circadian Activity of NLRP3 Inflammasome to Reduce the Severity of Fulminant Hepatitis in Mice

炎症体 脂多糖 化学 先天免疫系统 炎症 白细胞介素10 免疫系统 细胞生物学 受体 分子生物学 免疫学 内分泌学 生物 内科学 医学 生物化学
作者
Benoît Pourcet,Mathilde Zecchin,Lise Ferri,Justine Beauchamp,Sadicha Sitaula,Cyrielle Billon,Stéphane Delhaye,Jonathan Vanhoutte,Alicia Mayeuf-Louchart,Quentin Thorel,Joel T. Haas,Jérôme Eeckhoute,David Dombrowicz,Christian Duhem,Alexis Boulinguiez,Steve Lancel,Yasmine Sebti,Thomas P. Burris,Bart Staels,Hélène Duez
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:154 (5): 1449-1464.e20 被引量:186
标识
DOI:10.1053/j.gastro.2017.12.019
摘要

Background & AimsThe innate immune system responds not only to bacterial signals, but also to non-infectious danger-associated molecular patterns that activate the NLRP3 inflammasome complex after tissue injury. Immune functions vary over the course of the day, but it is not clear whether these changes affect the activity of the NLRP3 inflammasome. We investigated whether the core clock component nuclear receptor subfamily 1 group D member 1 (NR1D1, also called Rev-erbα) regulates expression, activity of the NLRP3 inflammasome, and its signaling pathway.MethodsWe collected naïve peritoneal macrophages and plasma, at multiple times of day, from Nr1d1–/– mice and their Nr1d1+/+ littermates (controls) and analyzed expression NLRP3, interleukin 1β (IL1B, in plasma), and IL18 (in plasma). We also collected bone marrow–derived primary macrophages from these mice. Levels of NR1D1 were knocked down with small hairpin RNAs in human primary macrophages. Bone marrow–derived primary macrophages from mice and human primary macrophages were incubated with lipopolysaccharide (LPS) to induce expression of NLRP3, IL1B, and IL18; cells were incubated with LPS and adenosine triphosphate to activate the NLRP3 complex. We analyzed caspase 1 activity and cytokine secretion. NR1D1 was activated in primary mouse and human macrophages by incubation with SR9009; some of the cells were also incubated with an NLRP3 inhibitor or inhibitors of caspase 1. Nr1d1–/– mice and control mice were given intraperitoneal injections of LPS to induce peritoneal inflammation; plasma samples were isolated and levels of cytokines were measured. Nr1d1–/– mice, control mice, and control mice given injections of SR9009 were given LPS and D-galactosamine to induce fulminant hepatitis and MCC950 to specifically inhibit NLRP3; plasma was collected to measure cytokines and a marker of liver failure (alanine aminotransferase); liver tissues were collected and analyzed by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry.ResultsIn peritoneal macrophages, expression of NLRP3 and activation of its complex varied with time of day (circadian rhythm)—this regulation required NR1D1. Primary macrophages from Nr1d1–/– mice and human macrophages with knockdown of NR1D1 had altered expression patterns of NLRP3, compared to macrophages that expressed NR1D1, and altered patterns of IL1B and 1L18 production. Mice with disruption of Nr1d1 developed more-severe acute peritoneal inflammation and fulminant hepatitis than control mice. Incubation of macrophage with the NR1D1 activator SR9009 reduced expression of NLRP3 and secretion of cytokines. Mice given SR9009 developed less-severe liver failure and had longer survival times than mice given saline (control).ConclusionsIn studies of Nr1d1–/– mice and human macrophages with pharmacologic activation of NR1D1, we found NR1D1 to regulate the timing of NLRP3 expression and production of inflammatory cytokines by macrophages. Activation of NR1D1 reduced the severity of peritoneal inflammation and fulminant hepatitis in mice. The innate immune system responds not only to bacterial signals, but also to non-infectious danger-associated molecular patterns that activate the NLRP3 inflammasome complex after tissue injury. Immune functions vary over the course of the day, but it is not clear whether these changes affect the activity of the NLRP3 inflammasome. We investigated whether the core clock component nuclear receptor subfamily 1 group D member 1 (NR1D1, also called Rev-erbα) regulates expression, activity of the NLRP3 inflammasome, and its signaling pathway. We collected naïve peritoneal macrophages and plasma, at multiple times of day, from Nr1d1–/– mice and their Nr1d1+/+ littermates (controls) and analyzed expression NLRP3, interleukin 1β (IL1B, in plasma), and IL18 (in plasma). We also collected bone marrow–derived primary macrophages from these mice. Levels of NR1D1 were knocked down with small hairpin RNAs in human primary macrophages. Bone marrow–derived primary macrophages from mice and human primary macrophages were incubated with lipopolysaccharide (LPS) to induce expression of NLRP3, IL1B, and IL18; cells were incubated with LPS and adenosine triphosphate to activate the NLRP3 complex. We analyzed caspase 1 activity and cytokine secretion. NR1D1 was activated in primary mouse and human macrophages by incubation with SR9009; some of the cells were also incubated with an NLRP3 inhibitor or inhibitors of caspase 1. Nr1d1–/– mice and control mice were given intraperitoneal injections of LPS to induce peritoneal inflammation; plasma samples were isolated and levels of cytokines were measured. Nr1d1–/– mice, control mice, and control mice given injections of SR9009 were given LPS and D-galactosamine to induce fulminant hepatitis and MCC950 to specifically inhibit NLRP3; plasma was collected to measure cytokines and a marker of liver failure (alanine aminotransferase); liver tissues were collected and analyzed by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. In peritoneal macrophages, expression of NLRP3 and activation of its complex varied with time of day (circadian rhythm)—this regulation required NR1D1. Primary macrophages from Nr1d1–/– mice and human macrophages with knockdown of NR1D1 had altered expression patterns of NLRP3, compared to macrophages that expressed NR1D1, and altered patterns of IL1B and 1L18 production. Mice with disruption of Nr1d1 developed more-severe acute peritoneal inflammation and fulminant hepatitis than control mice. Incubation of macrophage with the NR1D1 activator SR9009 reduced expression of NLRP3 and secretion of cytokines. Mice given SR9009 developed less-severe liver failure and had longer survival times than mice given saline (control). In studies of Nr1d1–/– mice and human macrophages with pharmacologic activation of NR1D1, we found NR1D1 to regulate the timing of NLRP3 expression and production of inflammatory cytokines by macrophages. Activation of NR1D1 reduced the severity of peritoneal inflammation and fulminant hepatitis in mice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
P_Chem完成签到,获得积分10
24秒前
原子应助小李老博采纳,获得20
25秒前
29秒前
李志全完成签到 ,获得积分10
41秒前
wmf完成签到 ,获得积分10
1分钟前
Lucas应助小兔子采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
天天天才完成签到,获得积分10
1分钟前
小胖完成签到 ,获得积分10
1分钟前
1分钟前
小兔子发布了新的文献求助10
1分钟前
gzy完成签到,获得积分20
1分钟前
1分钟前
1分钟前
gzy发布了新的文献求助10
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
宝贝完成签到 ,获得积分10
2分钟前
JamesPei应助yuanjunhu采纳,获得10
2分钟前
Virtual应助S2采纳,获得10
2分钟前
2分钟前
yiyixt完成签到 ,获得积分10
3分钟前
勤劳的小猫咪完成签到,获得积分10
3分钟前
CRUSADER完成签到,获得积分10
3分钟前
小羊同学发布了新的文献求助10
3分钟前
3分钟前
yuanjunhu发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助30
3分钟前
3分钟前
3分钟前
haralee完成签到 ,获得积分10
3分钟前
3分钟前
yuanjunhu完成签到,获得积分20
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4256087
求助须知:如何正确求助?哪些是违规求助? 3788715
关于积分的说明 11888783
捐赠科研通 3438362
什么是DOI,文献DOI怎么找? 1886902
邀请新用户注册赠送积分活动 938071
科研通“疑难数据库(出版商)”最低求助积分说明 843711