恶性肿瘤
表面增强拉曼光谱
医学
金标准(测试)
疾病
拉曼光谱
机器学习
精密医学
人工智能
计算机科学
医学物理学
内科学
病理
拉曼散射
光学
物理
作者
Stacy Grieve,Nagaprasad Puvvada,Angkoon Phinyomark,Kevin Russell,Alli Murugesan,Elizabeth Zed,Ansar Hassan,Jean‐François Légaré,Petra C. Kienesberger,Thomas Pulinilkunnil,Tony Reiman,Erik Scheme,Keith R. Brunt
出处
期刊:Nanomedicine
[Future Medicine]
日期:2021-09-22
卷期号:16 (24): 2175-2188
被引量:9
标识
DOI:10.2217/nnm-2021-0076
摘要
Aim: Monitoring minimal residual disease remains a challenge to the effective medical management of hematological malignancies; yet surface-enhanced Raman spectroscopy (SERS) has emerged as a potential clinical tool to do so. Materials & methods: We developed a cell-free, label-free SERS approach using gold nanoparticles (nanoSERS) to classify hematological malignancies referenced against two control cohorts: healthy and noncancer cardiovascular disease. A predictive model was built using machine-learning algorithms to incorporate disease burden scores for patients under standard treatment upon. Results: Linear- and quadratic-discriminant analysis distinguished three cohorts with 69.8 and 71.4% accuracies, respectively. A predictive nanoSERS model correlated (MSE = 1.6) with established clinical parameters. Conclusion: This study offers a proof-of-concept for the noninvasive monitoring of disease progression, highlighting the potential to incorporate nanoSERS into translational medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI