SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers

高光谱成像 计算机科学 骨干网 模式识别(心理学) 人工智能 变压器 卷积神经网络 特征提取 像素 上下文图像分类 数据挖掘 图像(数学) 电信 量子力学 物理 电压
作者
Danfeng Hong,Zhu Han,Jing Yao,Lianru Gao,Bing Zhang,Antonio Plaza,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:727
标识
DOI:10.1109/tgrs.2021.3130716
摘要

Hyperspectral (HS) images are characterized by approximately contiguous spectral information, enabling the fine identification of materials by capturing subtle spectral discrepancies. Owing to their excellent locally contextual modeling ability, convolutional neural networks (CNNs) have been proven to be a powerful feature extractor in HS image classification. However, CNNs fail to mine and represent the sequence attributes of spectral signatures well due to the limitations of their inherent network backbone. To solve this issue, we rethink HS image classification from a sequential perspective with transformers, and propose a novel backbone network called \ul{SpectralFormer}. Beyond band-wise representations in classic transformers, SpectralFormer is capable of learning spectrally local sequence information from neighboring bands of HS images, yielding group-wise spectral embeddings. More significantly, to reduce the possibility of losing valuable information in the layer-wise propagation process, we devise a cross-layer skip connection to convey memory-like components from shallow to deep layers by adaptively learning to fuse "soft" residuals across layers. It is worth noting that the proposed SpectralFormer is a highly flexible backbone network, which can be applicable to both pixel- and patch-wise inputs. We evaluate the classification performance of the proposed SpectralFormer on three HS datasets by conducting extensive experiments, showing the superiority over classic transformers and achieving a significant improvement in comparison with state-of-the-art backbone networks. The codes of this work will be available at https://github.com/danfenghong/IEEE_TGRS_SpectralFormer for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助爱笑芝采纳,获得10
刚刚
feike完成签到,获得积分10
刚刚
刚刚
洁净的尔容应助xi采纳,获得10
刚刚
不一样的烟火完成签到,获得积分10
1秒前
2秒前
草莓大恐龙完成签到,获得积分10
2秒前
Zx发布了新的文献求助10
2秒前
2秒前
2秒前
隐形曼青应助蓝莓采纳,获得10
2秒前
2秒前
3秒前
sad发布了新的文献求助10
4秒前
Seciy完成签到 ,获得积分10
4秒前
清秀颜演发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
勤劳的水之完成签到,获得积分10
6秒前
枫老板完成签到,获得积分10
7秒前
茶柠发布了新的文献求助10
7秒前
仁爱傲丝完成签到,获得积分20
7秒前
shuang发布了新的文献求助10
7秒前
粱乘风发布了新的文献求助10
8秒前
8秒前
领导范儿应助风趣夜云采纳,获得10
8秒前
Meyako应助陈陈采纳,获得10
9秒前
orixero应助清如采纳,获得10
10秒前
可爱的函函应助KeLiang采纳,获得10
10秒前
lin发布了新的文献求助10
10秒前
xi完成签到,获得积分10
10秒前
11秒前
Carmen完成签到,获得积分10
11秒前
11秒前
orixero应助coconut采纳,获得10
12秒前
传奇3应助相信你真采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4237610
求助须知:如何正确求助?哪些是违规求助? 3771626
关于积分的说明 11845236
捐赠科研通 3427722
什么是DOI,文献DOI怎么找? 1881192
邀请新用户注册赠送积分活动 933554
科研通“疑难数据库(出版商)”最低求助积分说明 840491