SpectralFormer: Rethinking Hyperspectral Image Classification with\n Transformers

高光谱成像 计算机科学 骨干网 模式识别(心理学) 人工智能 变压器 卷积神经网络 特征提取 像素 上下文图像分类 数据挖掘 图像(数学) 电信 量子力学 物理 电压
作者
Danfeng Hong,Zhu Han,Jing Yao,Lianru Gao,Bing Zhang,Antonio Plaza,Jocelyn Chanussot
出处
期刊:Cornell University - arXiv 被引量:1037
标识
DOI:10.1109/tgrs.2021.3130716
摘要

Hyperspectral (HS) images are characterized by approximately contiguous\nspectral information, enabling the fine identification of materials by\ncapturing subtle spectral discrepancies. Owing to their excellent locally\ncontextual modeling ability, convolutional neural networks (CNNs) have been\nproven to be a powerful feature extractor in HS image classification. However,\nCNNs fail to mine and represent the sequence attributes of spectral signatures\nwell due to the limitations of their inherent network backbone. To solve this\nissue, we rethink HS image classification from a sequential perspective with\ntransformers, and propose a novel backbone network called \\ul{SpectralFormer}.\nBeyond band-wise representations in classic transformers, SpectralFormer is\ncapable of learning spectrally local sequence information from neighboring\nbands of HS images, yielding group-wise spectral embeddings. More\nsignificantly, to reduce the possibility of losing valuable information in the\nlayer-wise propagation process, we devise a cross-layer skip connection to\nconvey memory-like components from shallow to deep layers by adaptively\nlearning to fuse "soft" residuals across layers. It is worth noting that the\nproposed SpectralFormer is a highly flexible backbone network, which can be\napplicable to both pixel- and patch-wise inputs. We evaluate the classification\nperformance of the proposed SpectralFormer on three HS datasets by conducting\nextensive experiments, showing the superiority over classic transformers and\nachieving a significant improvement in comparison with state-of-the-art\nbackbone networks. The codes of this work will be available at\nhttps://github.com/danfenghong/IEEE_TGRS_SpectralFormer for the sake of\nreproducibility.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Twonej应助一一采纳,获得30
2秒前
老实秋寒应助Woo_SH采纳,获得10
2秒前
4秒前
领导范儿应助3080采纳,获得10
5秒前
整箱发布了新的文献求助10
6秒前
王志杰发布了新的文献求助10
6秒前
思源应助mm采纳,获得10
6秒前
7秒前
somus1997完成签到,获得积分10
7秒前
8秒前
Jasper应助么么叽采纳,获得10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
Dong发布了新的文献求助10
10秒前
宴究生完成签到,获得积分10
10秒前
Ava应助晓晓采纳,获得30
11秒前
康康发布了新的文献求助10
11秒前
11秒前
我是老大应助整箱采纳,获得10
11秒前
慕青应助开朗四娘采纳,获得10
12秒前
cuber完成签到 ,获得积分10
12秒前
麦子发布了新的文献求助10
12秒前
妤懿完成签到 ,获得积分10
14秒前
完美世界应助11采纳,获得10
14秒前
危机的尔芙完成签到,获得积分10
14秒前
14秒前
hchnb1234发布了新的文献求助20
14秒前
霸气谷蕊完成签到,获得积分10
15秒前
乐乐应助remake441采纳,获得10
15秒前
顾矜应助zzyytt采纳,获得10
16秒前
16秒前
fang发布了新的文献求助10
16秒前
16秒前
小金子发布了新的文献求助10
16秒前
17秒前
Twonej应助岁月在前进采纳,获得30
18秒前
清脆大树完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712864
求助须知:如何正确求助?哪些是违规求助? 5212603
关于积分的说明 15268873
捐赠科研通 4864679
什么是DOI,文献DOI怎么找? 2611584
邀请新用户注册赠送积分活动 1561888
关于科研通互助平台的介绍 1519133