FusionM4Net: A multi-stage multi-modal learning algorithm for multi-label skin lesion classification

计算机科学 人工智能 模态(人机交互) 模式识别(心理学) 构造(python库) 特征(语言学) 情态动词 支持向量机 阶段(地层学) 机器学习 哲学 古生物学 生物 化学 高分子化学 程序设计语言 语言学
作者
Peng Tang,Xintong Yan,Yang Nan,Xiang Shao,Sebastian Krammer,Tobias Lasser
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:76: 102307-102307 被引量:39
标识
DOI:10.1016/j.media.2021.102307
摘要

Skin disease is one of the most common diseases in the world. Deep learning-based methods have achieved excellent skin lesion recognition performance, most of which are based on only dermoscopy images. In recent works that use multi-modality data (patient's meta-data, clinical images, and dermoscopy images), the methods adopt a one-stage fusion approach and only optimize the information fusion at the feature level. These methods do not use information fusion at the decision level and thus cannot fully use the data of all modalities. This work proposes a novel two-stage multi-modal learning algorithm (FusionM4Net) for multi-label skin diseases classification. At the first stage, we construct a FusionNet, which exploits and integrates the representation of clinical and dermoscopy images at the feature level, and then uses a Fusion Scheme 1 to conduct the information fusion at the decision level. At the second stage, to further incorporate the patient's meta-data, we propose a Fusion Scheme 2, which integrates the multi-label predictive information from the first stage and patient's meta-data information to train an SVM cluster. The final diagnosis is formed by the fusion of the predictions from the first and second stages. Our algorithm was evaluated on the seven-point checklist dataset, a well-established multi-modality multi-label skin disease dataset. Without using the patient's meta-data, the proposed FusionM4Net's first stage (FusionM4Net-FS) achieved an average accuracy of 75.7% for multi-classification tasks and 74.9% for diagnostic tasks, which is more accurate than other state-of-the-art methods. By further fusing the patient's meta-data at FusionM4Net's second stage (FusionM4Net-SS), the entire FusionM4Net finally boosts the average accuracy to 77.0% and the diagnostic accuracy to 78.5%, which indicates its robust and excellent classification performance on the label-imbalanced dataset. The corresponding code is available at: https://github.com/pixixiaonaogou/MLSDR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohan发布了新的文献求助10
刚刚
在水一方应助忧郁芹菜采纳,获得10
1秒前
xunxunmimi应助hbc采纳,获得30
1秒前
gy完成签到,获得积分10
2秒前
2秒前
传奇3应助务实寒天采纳,获得10
6秒前
xiaohan完成签到,获得积分10
7秒前
7秒前
笑柳发布了新的文献求助10
7秒前
wanci应助xiaoliu采纳,获得10
9秒前
优美电脑发布了新的文献求助10
10秒前
一样的seal完成签到,获得积分10
11秒前
一只小猪包完成签到,获得积分10
12秒前
12秒前
别摆烂了发布了新的文献求助10
13秒前
YJ888发布了新的文献求助30
14秒前
王小乐完成签到 ,获得积分10
15秒前
15秒前
16秒前
18秒前
包容山灵发布了新的文献求助30
19秒前
19秒前
xiaoliu发布了新的文献求助10
19秒前
情怀应助Dc采纳,获得10
20秒前
托妞完成签到,获得积分10
22秒前
优美电脑完成签到,获得积分10
23秒前
妲己在此发布了新的文献求助10
23秒前
桔梗完成签到,获得积分10
23秒前
SciGPT应助红烧排骨仔采纳,获得10
25秒前
FashionBoy应助YJ888采纳,获得10
26秒前
27秒前
orixero应助呆萌的觅松采纳,获得10
27秒前
27秒前
31秒前
31秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
31秒前
wyj发布了新的文献求助10
32秒前
青春奇谈发布了新的文献求助10
33秒前
34秒前
光亮的冰薇完成签到 ,获得积分10
35秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839862
求助须知:如何正确求助?哪些是违规求助? 3382134
关于积分的说明 10521407
捐赠科研通 3101561
什么是DOI,文献DOI怎么找? 1708111
邀请新用户注册赠送积分活动 822207
科研通“疑难数据库(出版商)”最低求助积分说明 773208