FusionM4Net: A multi-stage multi-modal learning algorithm for multi-label skin lesion classification

计算机科学 人工智能 皮肤损伤 模式识别(心理学) 算法 多标签分类 情态动词 阶段(地层学) 机器学习 医学 皮肤病科 材料科学 生物 古生物学 高分子化学
作者
Peng Tang,Xintong Yan,Nan Yang,Shao Xiang,Sebastian Krammer,Tobias Lasser
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:76: 102307-102307 被引量:100
标识
DOI:10.1016/j.media.2021.102307
摘要

Skin disease is one of the most common diseases in the world. Deep learning-based methods have achieved excellent skin lesion recognition performance, most of which are based on only dermoscopy images. In recent works that use multi-modality data (patient's meta-data, clinical images, and dermoscopy images), the methods adopt a one-stage fusion approach and only optimize the information fusion at the feature level. These methods do not use information fusion at the decision level and thus cannot fully use the data of all modalities. This work proposes a novel two-stage multi-modal learning algorithm (FusionM4Net) for multi-label skin diseases classification. At the first stage, we construct a FusionNet, which exploits and integrates the representation of clinical and dermoscopy images at the feature level, and then uses a Fusion Scheme 1 to conduct the information fusion at the decision level. At the second stage, to further incorporate the patient's meta-data, we propose a Fusion Scheme 2, which integrates the multi-label predictive information from the first stage and patient's meta-data information to train an SVM cluster. The final diagnosis is formed by the fusion of the predictions from the first and second stages. Our algorithm was evaluated on the seven-point checklist dataset, a well-established multi-modality multi-label skin disease dataset. Without using the patient's meta-data, the proposed FusionM4Net's first stage (FusionM4Net-FS) achieved an average accuracy of 75.7% for multi-classification tasks and 74.9% for diagnostic tasks, which is more accurate than other state-of-the-art methods. By further fusing the patient's meta-data at FusionM4Net's second stage (FusionM4Net-SS), the entire FusionM4Net finally boosts the average accuracy to 77.0% and the diagnostic accuracy to 78.5%, which indicates its robust and excellent classification performance on the label-imbalanced dataset. The corresponding code is available at: https://github.com/pixixiaonaogou/MLSDR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
2秒前
去银行整点金条完成签到 ,获得积分10
3秒前
科研菜鸡完成签到,获得积分10
4秒前
4秒前
4秒前
赘婿应助钼yanghua采纳,获得10
5秒前
慕青应助解雨洁采纳,获得10
5秒前
烤全鱼呢完成签到,获得积分10
6秒前
高斯发布了新的文献求助30
6秒前
老庄发布了新的文献求助30
6秒前
LSY-henu完成签到,获得积分10
6秒前
6秒前
hhhhhhhh发布了新的文献求助10
6秒前
漫天繁星发布了新的文献求助10
7秒前
111完成签到,获得积分10
8秒前
李杰发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
娇气的背包完成签到,获得积分10
11秒前
lz发布了新的文献求助10
11秒前
Akim应助木子采纳,获得10
12秒前
高天雨发布了新的文献求助10
13秒前
烟花应助川川采纳,获得10
15秒前
在水一方应助一杯半茶采纳,获得10
16秒前
汉堡包应助张世华采纳,获得10
20秒前
23秒前
所所应助Zengyuan采纳,获得10
23秒前
23秒前
23秒前
24秒前
科研通AI6应助大毛采纳,获得10
26秒前
27秒前
27秒前
科研小十三完成签到,获得积分10
28秒前
SD发布了新的文献求助10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533210
求助须知:如何正确求助?哪些是违规求助? 4621604
关于积分的说明 14579314
捐赠科研通 4561659
什么是DOI,文献DOI怎么找? 2499451
邀请新用户注册赠送积分活动 1479304
关于科研通互助平台的介绍 1450504