Accurate and Fast Image Denoising via Attention Guided Scaling

计算机科学 鉴别器 人工智能 降噪 特征(语言学) 噪音(视频) 频道(广播) 模式识别(心理学) 计算机视觉 图像(数学) 图像复原 缩放比例 图像处理 数学 几何学 探测器 哲学 电信 语言学 计算机网络
作者
Yulun Zhang,Kunpeng Li,Kai Li,Gan Sun,Yu Kong,Yun Fu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 6255-6265 被引量:41
标识
DOI:10.1109/tip.2021.3093396
摘要

Image denoising is a classical topic yet still a challenging problem, especially for reducing noise from the texture information. Feature scaling (e.g., downscale and upscale) is a widely practice in image denoising to enlarge receptive field size and save resources. However, such a common operation would lose some visual informative details. To address those problems, we propose fast and accurate image denoising via attention guided scaling (AGS). We find that the main informative feature channel and visual primitives during the scaling should keep similar. We then propose to extract the global channel-wise attention to maintain main channel information. Moreover, we propose to collect global descriptors by considering the entire spatial feature. And we then distribute the global descriptors to local positions of the scaled feature, based on their specific needs. We further introduce AGS for adversarial training, resulting in a more powerful discriminator. Extensive experiments show the effectiveness of our proposed method, where we clearly surpass all the state-of-the-art methods on most popular synthetic and real-world denoising benchmarks quantitatively and visually. We further show that our network contributes to other high-level vision applications and improves their performances significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧曲奇发布了新的文献求助10
刚刚
ZLY完成签到,获得积分10
1秒前
seine完成签到 ,获得积分10
1秒前
mouxq发布了新的文献求助10
2秒前
2秒前
SciGPT应助着急的小松鼠采纳,获得10
3秒前
LL发布了新的文献求助10
4秒前
5秒前
褚香旋完成签到,获得积分10
5秒前
科研通AI5应助YQ采纳,获得10
5秒前
8秒前
9秒前
科研民工_郭完成签到,获得积分10
9秒前
科研通AI5应助zhaoming采纳,获得10
10秒前
11秒前
老虎皮发布了新的文献求助10
11秒前
lllllll发布了新的文献求助10
12秒前
12秒前
科研通AI5应助独特的土豆采纳,获得10
13秒前
13秒前
hh发布了新的文献求助30
14秒前
15秒前
默然回首发布了新的文献求助10
15秒前
橘子皮完成签到,获得积分10
15秒前
15秒前
唐萧发布了新的文献求助10
16秒前
17秒前
哈哈哈发布了新的文献求助10
19秒前
慕青应助huangbaba11采纳,获得10
19秒前
20秒前
TAZIA完成签到,获得积分10
21秒前
彭于晏应助25号底片采纳,获得10
21秒前
22秒前
23秒前
23秒前
热心白玉完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
小高爱科研关注了科研通微信公众号
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803558
求助须知:如何正确求助?哪些是违规求助? 3348465
关于积分的说明 10338603
捐赠科研通 3064504
什么是DOI,文献DOI怎么找? 1682623
邀请新用户注册赠送积分活动 808381
科研通“疑难数据库(出版商)”最低求助积分说明 764038