Prediction of post-stroke cognitive impairment using brain FDG PET: deep learning-based approach

接收机工作特性 内科学 医学 曲线下面积 神经影像学 认知功能衰退 置信区间 生物标志物 冲程(发动机) 心脏病学 认知 痴呆 疾病 精神科 工程类 化学 机械工程 生物化学
作者
Reeree Lee,Hongyoon Choi,Kwang‐Yeol Park,Jeong‐Min Kim,Ju Won Seok
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (4): 1254-1262 被引量:23
标识
DOI:10.1007/s00259-021-05556-0
摘要

Post-stroke cognitive impairment can affect up to one third of stroke survivors. Since cognitive function greatly contributes to patients' quality of life, an objective quantitative biomarker for early prediction of dementia after stroke is required. We developed a deep-learning (DL)-based signature using positron emission tomography (PET) to objectively evaluate cognitive decline in patients with stroke.We built a DL model that differentiated Alzheimer's disease (AD) from normal controls (NC) using brain fluorodeoxyglucose (FDG) PET from the Alzheimer's Disease Neuroimaging Initiative database. The model was directly transferred to a prospectively enrolled cohort of patients with stroke to differentiate patients with dementia from those without dementia. The accuracy of the model was evaluated by the area under the curve values of receiver operating characteristic curves (AUC-ROC). We visualized the distribution of DL-based features and brain regions that the model weighted for classification. Correlations between cognitive signature from the DL model and clinical variables were evaluated, and survival analysis for post-stroke dementia was performed in patients with stroke.The classification of AD vs. NC subjects was performed with AUC-ROC of 0.94 (95% confidence interval [CI], 0.89-0.98). The transferred model discriminated stroke patients with dementia (AUC-ROC = 0.75). The score of cognitive decline signature using FDG PET was positively correlated with age, neutrophil-lymphocyte ratio and platelet-lymphocyte ratio and negatively correlated with body mass index in patients with stroke. We found that the cognitive decline score was an independent risk factor for dementia following stroke (hazard ratio, 10.90; 95% CI, 3.59-33.09; P < 0.0001) after adjustment for other key variables.The DL-based cognitive signature using FDG PET was successfully transferred to an independent stroke cohort. It is suggested that DL-based cognitive evaluation using FDG PET could be utilized as an objective biomarker for cognitive dysfunction in patients with cerebrovascular diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自觉宛筠发布了新的文献求助10
2秒前
2秒前
执着的海完成签到,获得积分10
2秒前
2秒前
ARESCI完成签到,获得积分20
3秒前
4秒前
4秒前
科研通AI2S应助lhy采纳,获得10
4秒前
隐形灯泡发布了新的文献求助10
4秒前
禹无极发布了新的文献求助10
4秒前
shy完成签到 ,获得积分10
4秒前
5秒前
科研H完成签到,获得积分10
5秒前
宇宙拿铁发布了新的文献求助10
5秒前
5秒前
香蕉从寒完成签到,获得积分10
6秒前
大模型应助酷酷班采纳,获得10
6秒前
zht发布了新的文献求助20
6秒前
邓文博发布了新的文献求助10
6秒前
完美世界应助研友_nPPz9n采纳,获得10
7秒前
Layman完成签到,获得积分0
7秒前
Joe完成签到,获得积分20
7秒前
XIZHENG_发布了新的文献求助10
8秒前
JF完成签到,获得积分10
8秒前
科研通AI6应助诚心的鸽子采纳,获得10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
SKY发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
星辰大海应助啊擦删除采纳,获得30
10秒前
英姑应助ordin采纳,获得10
10秒前
领导范儿应助小巧的不悔采纳,获得10
10秒前
czx完成签到,获得积分10
10秒前
参也完成签到 ,获得积分10
10秒前
11秒前
ff发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506145
求助须知:如何正确求助?哪些是违规求助? 4601666
关于积分的说明 14478195
捐赠科研通 4535688
什么是DOI,文献DOI怎么找? 2485572
邀请新用户注册赠送积分活动 1468465
关于科研通互助平台的介绍 1440943