化学
矿化(土壤科学)
催化作用
废水
硫酸盐
苯酚
核化学
环境化学
无机化学
环境工程
有机化学
氮气
工程类
作者
Haibao Liu,Yue Gao,Jie Wang,Jingwen Pan,Baoyu Gao,Qinyan Yue
标识
DOI:10.1016/j.scitotenv.2021.150867
摘要
Herein, we attempted to apply an alumina-based bimetallic (Mn-Ce) catalyst as an O3 activator and explored the feasibility of the treatment of hypersaline organic wastewater. Compared with independent O3 (35.00 ± 4.20%), mineralization of ciprofloxacin (CIP) under the Mn-CeOx@γ-Al2O3/O3 (MCAO) process was elevated to 76.04 ± 2.30%. The synergetic corporation among multivalence redox pairs of Mn (III)/Mn (IV), Ce (III)/Ce (IV) promoted the protonation of the surface hydroxyl group (S-OH2+), and subsequently the dominant reactive oxygen species in the MCAO process, OH and O2-, were generated rapidly. However, the mineralization of CIP decreased in MCAO/SO42- system due to the formation of SO4-, which reacted with CIP more slowly (8.4 × 108 M-1 s-1) than OH (4.1 × 109 M-1 s-1). In MCAO/SO42-/Cl- mixture saline conditions, mineralization of CIP was improved at low Cl- concentration (0.5 wt%) due to the generation of Cl, while inhibited with excessive Cl- (≥1.5 wt%) owing to the formation of residual chlorides (Cl2, Cl2- and ClO-). Meanwhile, the MCAO process possessed promising capability to remediate hypersaline wastewater containing dyes, phenol and pesticides, as well as actual salinity-rich wastewater. Based on the above, the present study would provide new insights into hypersaline organic wastewater treatment by the MCAO process.
科研通智能强力驱动
Strongly Powered by AbleSci AI