Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model

高光谱成像 环境科学 土壤科学 重金属 随机森林 遥感 环境化学 矿物学 地质学 化学 材料科学 计算机科学 冶金 机器学习
作者
Wei Zhou,Yang Han,Lijuan Xie,Haoran Li,Lu Huang,Yapeng Zhao,Guirui Yu
出处
期刊:Catena [Elsevier BV]
卷期号:202: 105222-105222 被引量:145
标识
DOI:10.1016/j.catena.2021.105222
摘要

Hyperspectral remote sensing technology has considerable research value in monitoring and evaluating soil heavy metal pollution. In this study, the Three-River Source Region was taken as the study area. The occurrence relationship of six heavy metals in soil, such as Mn, Cu, Zn, Pb, Cr, Ni, with soil organic matter, clay minerals, and iron-manganese oxides, was studied through the determination and analysis of soil samples and the collection of soil reflectance spectrum. Spectral transformation was carried out by first derivative, second derivative, inverse-log, continuum removal and multiple scattering correction of the spectrum. The correlation between soil heavy metal content and soil spectrum was analyzed to select the characteristic band, and partial least squares (PLS) method, support vector machine (SVM) method and random forest (RF) model were used to build inversion model based on characteristic band. Then the best combination of spectral transformation and inversion model were explored. The results showed that Pb contents were the twice of the background in Qinghai province. The combination spectrum processing method can improve the correlation between spectrum and heavy metals. The location and quantity of characteristic bands of six heavy metals are different. The accuracy of RF was significantly better than that of SVM and PLS for all six heavy metal (i.e. pb: R2RF = 0.83, R2SVM = 0.62, R2PLS = 0.18), and the model effective of soil properties in non-polluted sites were reliable (i.e. clay: R2RF = 0.93, R2SVM = 0.87, R2PLS = 0.74). This study can provide technical support for the larger-scale monitoring of soil heavy metal content and heavy metal pollution assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
swx发布了新的文献求助10
2秒前
柯卿彦发布了新的文献求助10
3秒前
crazy完成签到,获得积分10
3秒前
Trends发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助150
4秒前
海洋发布了新的文献求助10
5秒前
tjt发布了新的文献求助10
5秒前
淅淅沥沥发布了新的文献求助10
6秒前
7秒前
swx完成签到,获得积分10
8秒前
deway发布了新的文献求助10
10秒前
答辩发布了新的文献求助10
12秒前
12秒前
爆米花应助海洋采纳,获得10
13秒前
13秒前
13秒前
逝水无痕发布了新的文献求助10
13秒前
13秒前
思源应助安静的盼晴采纳,获得10
13秒前
aaaaarfv发布了新的文献求助10
14秒前
14秒前
北觅313完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
Lucas应助王哒哒采纳,获得10
16秒前
16秒前
16秒前
郭喆完成签到,获得积分10
16秒前
深情安青应助姚学宇采纳,获得10
16秒前
所所应助陈奕彤采纳,获得10
17秒前
zzz发布了新的文献求助10
18秒前
18秒前
Gnehsnuy发布了新的文献求助10
18秒前
19秒前
dadada发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4868146
求助须知:如何正确求助?哪些是违规求助? 4159789
关于积分的说明 12899265
捐赠科研通 3914053
什么是DOI,文献DOI怎么找? 2149600
邀请新用户注册赠送积分活动 1168125
关于科研通互助平台的介绍 1070512