已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of the surface roughness and material removal rate in chemical mechanical polishing of single-crystal SiC via a back-propagation neural network

抛光 磨料 化学机械平面化 材料科学 表面粗糙度 粒子(生态学) 粒径 Crystal(编程语言) 表面光洁度 复合材料 冶金 化学工程 计算机科学 海洋学 程序设计语言 地质学 工程类
作者
Jiayun Deng,Qixiang Zhang,Jiabin Lu,Qiusheng Yan,Jisheng Pan,Run Chen
出处
期刊:Precision Engineering-journal of The International Societies for Precision Engineering and Nanotechnology [Elsevier]
卷期号:72: 102-110 被引量:54
标识
DOI:10.1016/j.precisioneng.2021.04.012
摘要

Chemical mechanical polishing (CMP) is a common method for realising the global planarisation and polishing of single-crystal SiC and other semiconductor substrates. The strong oxidant hydroxyl radicals (·OH) generated by the Fenton reaction can effectively oxidise and corrode the SiC substrate, and are thus used to improve the material removal rate (MRR) and surface roughness (Ra) after polishing of SiC during CMP. Therefore, it is necessary to study the material removal mechanism in detail. Based on the modified Preston equation, the effects of the CMP process parameters on the MRR and Ra after polishing of SiC and their relationship were studied, and a prediction model of the CMP process parameters, MRR, and Ra after polishing was also established based on a back-propagation neural network. The MRR initially increased and then decreased, and the Ra after polishing initially decreased and then increased, with increasing FeSO4 concentration, H2O2 concentration, and pH value. The MRR continuously increased with increasing abrasive particle size, abrasive concentration, polishing pressure, and polishing speed. However, the Ra continuously decreased with increasing abrasive particle size and abrasive concentration, increased with increasing polishing pressure, and initially decreased and then increased with increasing polishing speed. The established prediction model could accurately predict the relationship between the process parameters, MRR and Ra after polishing in CMP (relative prediction error of less than 10%), which could provide a theoretical basis for CMP of SiC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星期一发布了新的文献求助10
1秒前
obaica发布了新的文献求助10
2秒前
3秒前
善学以致用应助zhangyk采纳,获得10
3秒前
4秒前
阿楚完成签到,获得积分10
5秒前
5秒前
5秒前
wunai012321完成签到,获得积分10
6秒前
6秒前
7秒前
无奈的达发布了新的文献求助10
8秒前
封印完成签到 ,获得积分10
9秒前
NexusExplorer应助开心蛋挞采纳,获得10
9秒前
Tuesday发布了新的文献求助10
9秒前
9秒前
阿俊1212发布了新的文献求助10
9秒前
阿楚发布了新的文献求助10
11秒前
wunai012321发布了新的文献求助10
11秒前
隐形曼青应助健壮的夕阳采纳,获得10
11秒前
yolo3o完成签到,获得积分10
12秒前
obaica完成签到,获得积分10
12秒前
13秒前
伶俐向梦发布了新的文献求助10
14秒前
淡淡土豆应助yao啦啦采纳,获得10
15秒前
18秒前
汉堡包应助星期一采纳,获得10
18秒前
持卿应助小王采纳,获得10
18秒前
19秒前
zhangzhaoxin发布了新的文献求助10
20秒前
笨笨念文完成签到 ,获得积分10
21秒前
21秒前
Milktea123完成签到,获得积分10
21秒前
22秒前
英姑应助季文婷采纳,获得10
22秒前
美好谷芹发布了新的文献求助10
23秒前
大个应助酷炫的雪珊采纳,获得10
23秒前
24秒前
25秒前
zhangyk发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522001
求助须知:如何正确求助?哪些是违规求助? 4613204
关于积分的说明 14537757
捐赠科研通 4550874
什么是DOI,文献DOI怎么找? 2493912
邀请新用户注册赠送积分活动 1474951
关于科研通互助平台的介绍 1446330