Time–Frequency-Domain Deep Learning Framework for the Automated Detection of Heart Valve Disorders Using PCG Signals

心音图 计算机科学 深度学习 卷积神经网络 人工智能 频域 模式识别(心理学) 信号(编程语言) 学习迁移 时域 时频分析 语音识别 计算机视觉 滤波器(信号处理) 程序设计语言
作者
Jay Karhade,Shaswati Dash,Samit Kumar Ghosh,Dinesh Kumar Dash,Rajesh Kumar Tripathy
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:81
标识
DOI:10.1109/tim.2022.3163156
摘要

The damage to the heart valves causes heart valve disorders (HVDs). The detection of HVDs is crucial in a clinical study as these diseases may cause congestive heart failure, hypertrophy, and stroke. The phonocardiogram (PCG) signal reveals information regarding the mechanical activity of the heart. The early detection of HVDs using PCG signal is vital to minimize the chances of cardiac arrest and other cardiac complications. This article proposes the time–frequency-domain deep learning (TFDDL) framework for automatic detection of HVDs using PCG signals. The time–frequency (TF)-domain representations of PCG signals are evaluated using both time-domain polynomial chirplet transform (TDPCT) and frequency-domain polynomial chirplet transform (FDPCT). The deep convolutional neural network (CNN) model is used to detect four types of HVDs using the TF images of PCG signals obtained using both the TDPCT and FDPCT methods. The proposed TFDDL approach is evaluated using PCG signals from public databases. For the detection of HVDs using TDPCT- and FDPCT-based TF images of PCG signals, the suggested approach has achieved overall accuracy values of 99% and 99.48%, respectively. For the classification of normal and abnormal heart sound classes, the proposed TFDDL approach has obtained an accuracy of 85.16% using PCG signals from the Physionet challenge 2016 database. The proposed TFDDL framework is compared with TF-domain transfer learning models such as residual network (ResNet-50) and visual geometry group (VGGNet-16). The overall accuracy values obtained using VGGNet-16 and ResNet-50 are less than the proposed deep CNN model for the detection of HVDs. The proposed TFDDL model can be validated in real-time using heart sound signals recorded from different subjects for automated identification of HVDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张艺蓝完成签到,获得积分10
刚刚
1秒前
赵济尧完成签到,获得积分10
1秒前
不如喂鱼去完成签到,获得积分10
1秒前
姬师发布了新的文献求助10
1秒前
1秒前
1秒前
poplin完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
hydccc完成签到,获得积分10
2秒前
wsh完成签到 ,获得积分10
2秒前
Peter完成签到,获得积分10
2秒前
2秒前
憨憨的小于完成签到,获得积分10
3秒前
3秒前
烟花应助苦涩油麦菜采纳,获得10
3秒前
一禅完成签到 ,获得积分10
3秒前
4秒前
麻烦~发布了新的文献求助10
4秒前
xzg111完成签到,获得积分10
4秒前
5秒前
滴滴发布了新的文献求助10
5秒前
阔达老太发布了新的文献求助10
5秒前
愉快若剑发布了新的文献求助10
5秒前
赵济尧发布了新的文献求助10
5秒前
嘛嘛嘛完成签到,获得积分10
5秒前
赤脚大仙发布了新的文献求助10
6秒前
小小Li完成签到,获得积分10
6秒前
sh发布了新的文献求助10
6秒前
ZNP发布了新的文献求助10
7秒前
happiness发布了新的文献求助10
7秒前
7秒前
下雨发布了新的文献求助10
7秒前
8秒前
CHBW完成签到,获得积分20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439