Reinforced Causal Explainer for Graph Neural Networks

计算机科学 归属 一般化 图形 突出 人工智能 GSM演进的增强数据速率 机器学习 人工神经网络 利用 理论计算机科学 数学 心理学 社会心理学 计算机安全 数学分析
作者
Xiang Wang,Yingxin Wu,An Zhang,Fuli Feng,Xiangnan He,Tat‐Seng Chua
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (2): 2297-2309 被引量:33
标识
DOI:10.1109/tpami.2022.3170302
摘要

Explainability is crucial for probing graph neural networks (GNNs), answering questions like "Why the GNN model makes a certain prediction?". Feature attribution is a prevalent technique of highlighting the explanatory subgraph in the input graph, which plausibly leads the GNN model to make its prediction. Various attribution methods have been proposed to exploit gradient-like or attention scores as the attributions of edges, then select the salient edges with top attribution scores as the explanation. However, most of these works make an untenable assumption - the selected edges are linearly independent - thus leaving the dependencies among edges largely unexplored, especially their coalition effect. We demonstrate unambiguous drawbacks of this assumption - making the explanatory subgraph unfaithful and verbose. To address this challenge, we propose a reinforcement learning agent, Reinforced Causal Explainer (RC-Explainer). It frames the explanation task as a sequential decision process - an explanatory subgraph is successively constructed by adding a salient edge to connect the previously selected subgraph. Technically, its policy network predicts the action of edge addition, and gets a reward that quantifies the action's causal effect on the prediction. Such reward accounts for the dependency of the newly-added edge and the previously-added edges, thus reflecting whether they collaborate together and form a coalition to pursue better explanations. It is trained via policy gradient to optimize the reward stream of edge sequences. As such, RC-Explainer is able to generate faithful and concise explanations, and has a better generalization power to unseen graphs. When explaining different GNNs on three graph classification datasets, RC-Explainer achieves better or comparable performance to state-of-the-art approaches w.r.t. two quantitative metrics: predictive accuracy, contrastivity, and safely passes sanity checks and visual inspections. Codes and datasets are available at https://github.com/xiangwang1223/reinforced_causal_explainer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
segama完成签到 ,获得积分10
1秒前
2秒前
大笨鹅之家完成签到 ,获得积分10
2秒前
yy发布了新的文献求助30
3秒前
zinnn应助小蘑菇采纳,获得10
4秒前
Luminous完成签到,获得积分10
5秒前
捞鱼发布了新的文献求助10
5秒前
鱿鱼炒黄瓜完成签到,获得积分10
6秒前
7秒前
Luminous发布了新的文献求助30
7秒前
8秒前
折耳根完成签到 ,获得积分10
8秒前
8秒前
昭奚发布了新的文献求助10
9秒前
fujibear完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
务实的南露完成签到,获得积分10
15秒前
默默的天亦完成签到,获得积分10
17秒前
17秒前
Kayson发布了新的文献求助10
17秒前
SciGPT应助shin采纳,获得10
17秒前
风趣的盼曼完成签到,获得积分10
18秒前
壶十二完成签到,获得积分10
19秒前
李健应助科研通管家采纳,获得10
20秒前
柯一一应助科研通管家采纳,获得10
20秒前
hanawang应助科研通管家采纳,获得30
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
柯一一应助科研通管家采纳,获得10
20秒前
伶俐妙海应助科研通管家采纳,获得50
20秒前
柯一一应助科研通管家采纳,获得10
20秒前
20秒前
21秒前
柯一一应助科研通管家采纳,获得10
21秒前
超帅可冥完成签到,获得积分10
22秒前
23秒前
没所谓完成签到,获得积分10
23秒前
小周完成签到,获得积分10
23秒前
汉堡包应助Shuning采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3923835
求助须知:如何正确求助?哪些是违规求助? 3468614
关于积分的说明 10952972
捐赠科研通 3197923
什么是DOI,文献DOI怎么找? 1766847
邀请新用户注册赠送积分活动 856563
科研通“疑难数据库(出版商)”最低求助积分说明 795489