CT-based radiomics to predict muscle invasion in bladder cancer

医学 膀胱癌 接收机工作特性 神经组阅片室 置信区间 队列 逻辑回归 放射科 癌症 泌尿科 内科学 神经学 精神科
作者
Gumuyang Zhang,Zhe Wu,Xiaoxiao Zhang,Lili Xu,Li Mao,Xiuli Li,Yu Xiao,Zhigang Ji,Hao Sun,Zhengyu Jin
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (5): 3260-3268 被引量:28
标识
DOI:10.1007/s00330-021-08426-3
摘要

This study investigated the feasibility of a computed tomography (CT)-based radiomics prediction model to evaluate muscle invasive status in bladder cancer.Patients who underwent CT urography at two medical centers from October 2014 to May 2020 and had bladder urothelial carcinoma confirmed by postoperative histopathology were retrospectively enrolled. In total, 441 cases were collected and randomized into a training cohort (n = 293), an internal testing cohort (n = 73), and an external testing cohort (n = 75). The images were first filtered, and then, 1218 features were extracted. The best features related to muscle invasiveness of bladder cancer were identified by ANOVA. A prediction model was built by using the logistic regression method. Statistical analysis was performed by plotting the receiver operating characteristic curve. Indicators of the diagnostic performance of the prediction model, including sensitivity, specificity, accuracy, and area under curve (AUC), were evaluated.In the training, internal testing, and external testing cohorts, the prediction model diagnosed muscle-invasive bladder cancer with AUCs of 0.885 (95% confidence interval [95% CI] 0.841-0.929), 0.820 (95% CI 0.698-0.941), and 0.784 (95% CI 0.674-0.893), respectively. In the internal testing cohort, the sensitivity, specificity, and accuracy of the model were 0.667 (95% CI 0.387-0.870), 0.845 (95% CI 0.721-0.922), and 0.782 (95% CI 0.729-0.827), respectively. In the external testing cohort, the sensitivity, specificity, and accuracy of the model were 0.742 (95% CI 0.551-0.873), 0.750 (95% CI 0.594-0.863), and 0.782 (95% CI 0.729-0.827), respectively.CT-based radiomics prediction model can evaluate muscle invasiveness of bladder cancer before surgery with a good diagnostic performance.• CT-based radiomics model can evaluate muscle invasive status in bladder cancer. • The radiomics model shows good diagnostic performance to differentiate muscle-invasive bladder cancer from non-muscle-invasive bladder cancer. • This preoperative CT-based prediction method might complement MR evaluation of bladder cancer and supplement biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助YWH采纳,获得30
刚刚
和尘同光发布了新的文献求助10
刚刚
Joker发布了新的文献求助10
刚刚
1秒前
zyw发布了新的文献求助10
1秒前
Yvette完成签到 ,获得积分10
2秒前
黄丹完成签到,获得积分10
2秒前
2秒前
执着梦山完成签到,获得积分10
3秒前
3秒前
科研王完成签到 ,获得积分10
3秒前
嘻嘻嘻发布了新的文献求助10
3秒前
4秒前
风中黎昕完成签到 ,获得积分10
4秒前
Jasper应助阿呆采纳,获得10
4秒前
王涛发布了新的文献求助10
4秒前
木之木完成签到,获得积分0
4秒前
6秒前
小玉完成签到,获得积分10
6秒前
6秒前
6秒前
daydreamammaking完成签到,获得积分10
6秒前
7秒前
清脆的又蓝完成签到,获得积分10
7秒前
7秒前
giant_panda发布了新的文献求助10
7秒前
虚幻的城发布了新的文献求助10
7秒前
8秒前
feimengxia发布了新的文献求助10
8秒前
8秒前
8秒前
10秒前
壮观不斜发布了新的文献求助10
10秒前
Jasmine发布了新的文献求助10
10秒前
在水一方应助小小铱采纳,获得10
11秒前
11秒前
曲小晴完成签到,获得积分10
11秒前
彩色蘑菇完成签到,获得积分10
12秒前
AliceLan完成签到,获得积分10
12秒前
蓝桉完成签到 ,获得积分10
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092657
求助须知:如何正确求助?哪些是违规求助? 3631418
关于积分的说明 11509690
捐赠科研通 3342272
什么是DOI,文献DOI怎么找? 1837095
邀请新用户注册赠送积分活动 904928
科研通“疑难数据库(出版商)”最低求助积分说明 822708