Interpretable tumor differentiation grade and microsatellite instability recognition in gastric cancer using deep learning

微卫星不稳定性 可解释性 队列 人工智能 癌症 H&E染色 深度学习 注释 医学 计算机科学 病理 计算生物学
作者
Feng Su,Jianming Li,Xinya Zhao,Beining Wang,Yajie Hu,Yichao Sun,Jiafu Ji
出处
期刊:Laboratory Investigation [Elsevier BV]
标识
DOI:10.1038/s41374-022-00742-6
摘要

Gastric cancer possesses great histological and molecular diversity, which creates obstacles for rapid and efficient diagnoses. Classic diagnoses either depend on the pathologist's judgment, which relies heavily on subjective experience, or time-consuming molecular assays for subtype diagnosis. Here, we present a deep learning (DL) system to achieve interpretable tumor differentiation grade and microsatellite instability (MSI) recognition in gastric cancer directly using hematoxylin-eosin (HE) staining whole-slide images (WSIs). WSIs from 467 patients were divided into three cohorts: the training cohort with 348 annotated WSIs, the testing cohort with 88 annotated WSIs, and the integration testing cohort with 31 original WSIs without tumor contour annotation. First, the DL models comprehensibly achieved tumor differentiation recognition with an F1 values of 0.8615 and 0.8977 for poorly differentiated adenocarcinoma (PDA) and well-differentiated adenocarcinoma (WDA) classes. Its ability to extract pathological features about the glandular structure formation, which is the key to distinguishing between PDA and WDA, increased the interpretability of the DL models. Second, the DL models achieved MSI status recognition with a patient-level accuracy of 86.36% directly from HE-stained WSIs in the testing cohort. Finally, the integrated end-to-end system achieved patient-level MSI recognition from original HE staining WSIs with an accuracy of 83.87% in the integration testing cohort with no tumor contour annotation. The proposed system, therefore, demonstrated high accuracy and interpretability, which can potentially promote the implementation of artificial intelligence healthcare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dadad发布了新的文献求助10
2秒前
3秒前
野椒搞科研完成签到,获得积分10
3秒前
4秒前
陶赖赖发布了新的文献求助10
6秒前
felicity完成签到 ,获得积分10
7秒前
科研通AI5应助野椒搞科研采纳,获得10
7秒前
刘伟发布了新的文献求助10
7秒前
小天发布了新的文献求助10
8秒前
15秒前
星辰大海应助无心的无施采纳,获得10
16秒前
刺花以夏完成签到 ,获得积分10
17秒前
斯文败类应助kai采纳,获得10
18秒前
无花果应助dadad采纳,获得10
18秒前
科目三应助xx采纳,获得10
20秒前
bkagyin应助LIJINGGE采纳,获得10
22秒前
无花果应助LIJINGGE采纳,获得10
22秒前
慕青应助LIJINGGE采纳,获得10
22秒前
所所应助LIJINGGE采纳,获得10
22秒前
Jayran完成签到 ,获得积分10
22秒前
无花果应助动人的老黑采纳,获得10
25秒前
27秒前
pluto应助LIJINGGE采纳,获得10
28秒前
慕青应助LIJINGGE采纳,获得10
28秒前
CipherSage应助LIJINGGE采纳,获得10
28秒前
酷波er应助LIJINGGE采纳,获得10
28秒前
FashionBoy应助LIJINGGE采纳,获得10
28秒前
搜集达人应助LIJINGGE采纳,获得10
28秒前
Ava应助LIJINGGE采纳,获得10
28秒前
桐桐应助LIJINGGE采纳,获得10
28秒前
共享精神应助LIJINGGE采纳,获得10
28秒前
CodeCraft应助LIJINGGE采纳,获得10
28秒前
ygr完成签到,获得积分0
30秒前
31秒前
李爱国应助study采纳,获得10
31秒前
35秒前
沙珠完成签到,获得积分10
36秒前
36秒前
可爱的函函应助甜美无剑采纳,获得10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415