微卫星不稳定性
可解释性
队列
人工智能
癌症
H&E染色
深度学习
注释
医学
计算机科学
病理
计算生物学
作者
Feng Su,Jianming Li,Xinya Zhao,Beining Wang,Yajie Hu,Yichao Sun,Jiafu Ji
标识
DOI:10.1038/s41374-022-00742-6
摘要
Gastric cancer possesses great histological and molecular diversity, which creates obstacles for rapid and efficient diagnoses. Classic diagnoses either depend on the pathologist's judgment, which relies heavily on subjective experience, or time-consuming molecular assays for subtype diagnosis. Here, we present a deep learning (DL) system to achieve interpretable tumor differentiation grade and microsatellite instability (MSI) recognition in gastric cancer directly using hematoxylin-eosin (HE) staining whole-slide images (WSIs). WSIs from 467 patients were divided into three cohorts: the training cohort with 348 annotated WSIs, the testing cohort with 88 annotated WSIs, and the integration testing cohort with 31 original WSIs without tumor contour annotation. First, the DL models comprehensibly achieved tumor differentiation recognition with an F1 values of 0.8615 and 0.8977 for poorly differentiated adenocarcinoma (PDA) and well-differentiated adenocarcinoma (WDA) classes. Its ability to extract pathological features about the glandular structure formation, which is the key to distinguishing between PDA and WDA, increased the interpretability of the DL models. Second, the DL models achieved MSI status recognition with a patient-level accuracy of 86.36% directly from HE-stained WSIs in the testing cohort. Finally, the integrated end-to-end system achieved patient-level MSI recognition from original HE staining WSIs with an accuracy of 83.87% in the integration testing cohort with no tumor contour annotation. The proposed system, therefore, demonstrated high accuracy and interpretability, which can potentially promote the implementation of artificial intelligence healthcare.
科研通智能强力驱动
Strongly Powered by AbleSci AI