Lost data neural semantic recovery framework for structural health monitoring based on deep learning

稳健性(进化) 计算机科学 人工智能 结构健康监测 数据丢失 卷积神经网络 条件概率 数据挖掘 机器学习 工程类 基因 化学 统计 计算机网络 结构工程 生物化学 数学
作者
Kejie Jiang,Qiang Han,Xiuli Du
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:37 (9): 1160-1187 被引量:43
标识
DOI:10.1111/mice.12850
摘要

Abstract Structural condition perception is a crucial step in structural health monitoring (SHM). Random loss or corruption of sensing data seriously hinders the reliability of the monitoring system. This paper discusses the recovery of randomly lost data in SHM from the perspective of conditional probability generation. A novel data‐driven neural semantic recovery framework is proposed, transforming data recovery into a conditional probability modeling problem. This framework uses deep fully convolutional neural networks with an encoder–decoder architecture to capture the overall semantic features of the vibration data, allowing accurate modeling of the behavior of complex conditional probability distributions. Advanced techniques such as dense connections, skip connections, and residual connections significantly improved the network's parameter utilization and recovery performance. Moreover, a novel perceptual loss function is proposed, enabling the network to integrate data loss patterns effectively. The proposed network can be trained end‐to‐end in a self‐supervised manner and perform efficient inferences. Based on the long‐term measured acceleration response under the ambient excitation of a pedestrian bridge, the recovery performance and robustness of the model are sufficiently verified and evaluated. The network exhibits excellent recovery accuracy and robustness, even if the loss ratio is as high as 90%. Preliminary evaluation results show that the proposed model can be seamlessly transferred to scenarios with continuous data loss without retraining the network. Finally, the application prospects of the framework in modal identification and anomaly monitoring of structural conditions are demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王建平发布了新的文献求助10
1秒前
共享精神应助小徐采纳,获得10
1秒前
2秒前
CipherSage应助青年晚报采纳,获得10
3秒前
一罐樱桃酱完成签到,获得积分10
3秒前
4秒前
善学以致用应助符宇新采纳,获得10
5秒前
陆上飞完成签到,获得积分10
5秒前
aoaoao发布了新的文献求助10
6秒前
隐形曼青应助uuunnn采纳,获得10
7秒前
花无双完成签到,获得积分0
8秒前
科研通AI5应助安南采纳,获得10
9秒前
nikonikoni发布了新的文献求助10
9秒前
9秒前
飞天817完成签到,获得积分10
10秒前
tongzehui完成签到,获得积分10
10秒前
12秒前
赘婿应助阿雷采纳,获得10
13秒前
13秒前
高大手链发布了新的文献求助10
13秒前
13秒前
青年晚报发布了新的文献求助10
15秒前
xuan完成签到 ,获得积分10
15秒前
机灵柚子应助aa采纳,获得10
15秒前
紫筱枫影发布了新的文献求助10
16秒前
tbdxby发布了新的文献求助20
17秒前
aaaaa完成签到,获得积分10
18秒前
18秒前
bkagyin应助衣带渐宽终不悔采纳,获得10
18秒前
执执发布了新的文献求助10
18秒前
一角完成签到,获得积分10
19秒前
fengfenghao完成签到,获得积分10
20秒前
Haley完成签到,获得积分10
20秒前
20秒前
小蘑菇应助谷闫采纳,获得10
21秒前
21秒前
Himanny完成签到,获得积分10
21秒前
科研通AI5应助nikonikoni采纳,获得10
22秒前
脑洞疼应助小火车采纳,获得10
22秒前
姜伟发布了新的文献求助10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838514
求助须知:如何正确求助?哪些是违规求助? 3380889
关于积分的说明 10516101
捐赠科研通 3100459
什么是DOI,文献DOI怎么找? 1707506
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772947