Thermal release tape-assisted semiconductor membrane transfer process for hybrid photonic devices embedding quantum emitters

光电子学 材料科学 光子学 量子点 光子 纳米线 半导体 纳米技术 光学 物理
作者
Cori Haws,Biswarup Guha,Edgar F. Perez,Marcelo Davanço,Jin Dong Song,Kartik Srinivasan,Luca Sapienza
出处
期刊:Materials for quantum technology [IOP Publishing]
卷期号:2 (2): 025003-025003 被引量:6
标识
DOI:10.1088/2633-4356/ac603e
摘要

Being able to combine different materials allows taking advantage of different properties and device engineering that cannot be found or exploited within a single material system. In quantum nano-photonics, one might want to increase the device functionalities by, for instance, combining efficient classical and quantum light emission available in III-V semiconductors, low-loss light propagation accessible in silicon-based materials, fast electro-optical properties of lithium niobate and broadband reflectors and/or buried metallic contacts for local electric field application or electrical injection of emitters. We propose a transfer printing technique based on the removal of arrays of free-standing membranes and their deposition onto a host material using a thermal release adhesive tape-assisted process. This approach is versatile, in that it poses limited restrictions on the transferred and host materials. In particular, we transfer 190 nm-thick GaAs membranes, with dimensions up to about 260$\mu$m x 80$\mu$m, containing InAs quantum dots, onto a gold substrate. We show that the presence of a back reflector combined with the etching of micro-pillars significantly increases the extraction efficiency of quantum light, reaching photon fluxes, from a single quantum dot line, exceeding 8 x 10$^5$ photons per second, which is four times higher than the highest count rates measured, on the same chip, from emitters outside the pillars. Given the versatility and the ease of the process, this technique opens the path to the realisation of hybrid quantum and nano-photonic devices that can combine virtually any material that can be undercut to realise free-standing membranes that are then transferred onto any host substrate, without specific compatibility issues and/or requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
彩虹儿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
4秒前
大麦迪发布了新的文献求助10
4秒前
4秒前
萌&发布了新的文献求助10
4秒前
bobo发布了新的文献求助150
5秒前
6秒前
6秒前
6秒前
一问三不栀完成签到,获得积分10
6秒前
传奇3应助内向的清炎采纳,获得10
6秒前
6秒前
香蕉觅云应助羊又串采纳,获得10
7秒前
可爱邓邓发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
211JZH发布了新的文献求助10
8秒前
奋斗不止发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4878327
求助须知:如何正确求助?哪些是违规求助? 4166068
关于积分的说明 12924640
捐赠科研通 3924109
什么是DOI,文献DOI怎么找? 2154202
邀请新用户注册赠送积分活动 1172294
关于科研通互助平台的介绍 1075940