Towards Robust Gesture Recognition by Characterizing the Sensing Quality of WiFi Signals

手势 计算机科学 手势识别 信号(编程语言) 人工智能 计算机视觉 语音识别 公制(单位) 噪音(视频) 质量(理念) 模式识别(心理学) 工程类 哲学 图像(数学) 认识论 程序设计语言 运营管理
作者
Ruiyang Gao,Wenwei Li,Yaxiong Xie,Enze Yi,Leye Wang,Dan Wu,Daqing Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:6 (1): 1-26 被引量:29
标识
DOI:10.1145/3517241
摘要

WiFi-based gesture recognition emerges in recent years and attracts extensive attention from researchers. Recognizing gestures via WiFi signal is feasible because a human gesture introduces a time series of variations to the received raw signal. The major challenge for building a ubiquitous gesture recognition system is that the mapping between each gesture and the series of signal variations is not unique, exact the same gesture but performed at different locations or with different orientations towards the transceivers generates entirely different gesture signals (variations). To remove the location dependency, prior work proposes to use gesture-level location-independent features to characterize the gesture instead of directly matching the signal variation pattern. We observe that gesture-level features cannot fully remove the location dependency since the signal qualities inside each gesture are different and also depends on the location. Therefore, we divide the signal time series of each gesture into segments according to their qualities and propose customized signal processing techniques to handle them separately. To realize this goal, we characterize signal's sensing quality by building a mathematical model that links the gesture signal with the ambient noise, from which we further derive a unique metric i.e., error of dynamic phase index (EDP-index) to quantitatively describe the sensing quality of signal segments of each gesture. We then propose a quality-oriented signal processing framework that maximizes the contribution of the high-quality signal segments and minimizes the impact of low-quality signal segments to improve the performance of gesture recognition applications. We develop a prototype on COTS WiFi devices. The extensive experimental results demonstrate that our system can recognize gestures with an accuracy of more than 94% on average, and significant improvements compared with state-of-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jonathan完成签到,获得积分10
1秒前
1秒前
贾大大完成签到,获得积分10
2秒前
3秒前
简单的冰真完成签到,获得积分10
3秒前
是我不得开心妍完成签到 ,获得积分10
4秒前
5秒前
香蕉曼凡完成签到,获得积分10
6秒前
yannick发布了新的文献求助80
6秒前
8秒前
8秒前
8秒前
郭囯完成签到,获得积分10
8秒前
科研小白完成签到,获得积分10
10秒前
wangq完成签到 ,获得积分10
10秒前
郭嘉仪发布了新的文献求助10
11秒前
唠叨的诗云完成签到,获得积分10
12秒前
香蕉曼凡发布了新的文献求助10
13秒前
15秒前
烟花应助闪闪的翠绿采纳,获得10
16秒前
xiaoxiao完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
科研通AI6应助郝宇采纳,获得10
18秒前
曾天祥发布了新的文献求助10
21秒前
22秒前
彭于晏应助李琛璐采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
23秒前
淹死的鱼应助科研通管家采纳,获得10
23秒前
changping应助科研通管家采纳,获得150
23秒前
852应助科研通管家采纳,获得10
23秒前
不染发布了新的文献求助10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
哈基米应助科研通管家采纳,获得20
23秒前
情怀应助科研通管家采纳,获得10
24秒前
淹死的鱼应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得30
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4977396
求助须知:如何正确求助?哪些是违规求助? 4230683
关于积分的说明 13176976
捐赠科研通 4021286
什么是DOI,文献DOI怎么找? 2200086
邀请新用户注册赠送积分活动 1212647
关于科研通互助平台的介绍 1128934