Artificial neural networks controller of active suspension for ambulance based on ISO standards

振动 主动悬架 悬挂(拓扑) 控制器(灌溉) 液压缸 减震器 休克(循环) 计算机科学 汽车工程 执行机构 人工神经网络 控制理论(社会学) 结构工程 工程类 机械工程 控制(管理) 医学 声学 物理 人工智能 数学 内科学 纯数学 同伦 生物 农学
作者
Anis Hamza,Noureddine Ben Yahia
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:237 (1): 34-47 被引量:17
标识
DOI:10.1177/09544070221075456
摘要

The level of vibration to which a patient is subjected in an ambulance is often too high. Ambulance personnel should take steps to reduce these vibrations. To avoid slowdowns and other barriers that create high vibration peaks, the speed is reduced or the ambulance deviates from the quicker or shorter path. This work implements Artificial Neural Network (ANN) control over five low-cost active shock absorbers proposed to decreasing the impact of vibration on a patient’s body during an ambulance ride. For this, the passive shock absorber is replaced by a new actuator consisting of a conventional hydraulic cylinder with a proportional butterfly valve placed outside the cylinder between its orifices. The ANN is used to adjust the damping coefficient. The ANN controller inputs are the accelerations of the sprung and unsprung masses, and the output is the valve opening area. Two forces may be exerted by this active suspension system: one is used to compensate for the mass of the stretcher, the patient and the medical equipment if present and a second is used to actively isolate the patient from the vibrations of the ambulance. The performance of the active suspension ambulance is contrasted to that of a traditional ambulance, in which the stretcher is rigidly linked to the ambulance body. When compared to alternative controllers, the findings showed that the proposed register controlled by ANN performed better. The simulations demonstrate that the active system may minimize the vibrations of the patient’s mass and the stretcher by more than 70% for random abnormalities in the road that meet the ISO2631-5 and ISO 8608 standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
DrY发布了新的文献求助30
3秒前
情怀应助Elec采纳,获得10
4秒前
4秒前
4秒前
轻轻发布了新的文献求助80
7秒前
CRANE完成签到 ,获得积分10
8秒前
8秒前
汉堡包应助paixingxing采纳,获得10
9秒前
猫咪老师应助宸一采纳,获得30
9秒前
Hermon发布了新的文献求助10
9秒前
x5kyi发布了新的文献求助10
9秒前
杨杨发布了新的文献求助10
9秒前
11秒前
12秒前
13秒前
能干的小海豚完成签到,获得积分10
14秒前
橙子发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
17秒前
17秒前
tutu完成签到,获得积分10
17秒前
mao应助茉莉青提采纳,获得10
17秒前
从容的盼晴完成签到,获得积分10
18秒前
18秒前
积极一德完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
科研通AI5应助Sakura采纳,获得10
19秒前
z小侠完成签到,获得积分10
20秒前
20秒前
ZhaoY发布了新的文献求助10
21秒前
在水一方应助..采纳,获得10
21秒前
宸一完成签到,获得积分10
21秒前
zhiqing发布了新的文献求助10
22秒前
最好的发布了新的文献求助10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329279
关于积分的说明 10241157
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268