Battery health management using physics-informed machine learning: Online degradation modeling and remaining useful life prediction

电池(电) 失效物理学 可靠性(半导体) 降级(电信) 锂离子电池 可靠性工程 锂(药物) 计算机科学 工程类 模拟 人工智能 汽车工程 电气工程 物理 医学 内分泌学 功率(物理) 量子力学
作者
Junchuan Shi,Alexis V. Rivera,Dazhong Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:179: 109347-109347 被引量:90
标识
DOI:10.1016/j.ymssp.2022.109347
摘要

• The physics-informed machine learning method combines a physics-based degradation model and a long short-term memory model. • The physics-based model considers the effects of operating conditions such as cycle time, environmental temperature, and loading condition on the degradation behavior of lithium-ion batteries. • The machine learning model learns the effects of the degradation behavior and operating conditions on the physical model using online monitoring data. • Experimental results have shown that the proposed method can accurately model lithium-ion battery degradation behavior as well as predict its RUL under different operating conditions. Lithium-ion batteries have been extensively used to power portable electronics, electric vehicles, and unmanned aerial vehicles over the past decade. Aging decreases the capacity of Lithium-ion batteries. Therefore, accurate remaining useful life (RUL) prediction is critical to the reliability, safety, and efficiency of the Lithium-ion battery-powered systems. However, battery aging is a complex electrochemical process affected by internal aging mechanisms and operating conditions (e.g., cycle time, environmental temperature, and loading condition). In this paper, a physics-informed machine learning method is proposed to model the degradation trend and predict the RUL of Lithium-ion batteries while accounting for battery health and operating conditions. The proposed physics-informed long short-term memory (PI-LSTM) model combines a physics-based calendar and cycle aging (CCA) model with an LSTM layer. The CCA model measures the aging effect of Lithium-ion batteries by combining five operating stress factor models. The PI-LSTM uses an LSTM layer to learn the relationship between the degradation trend determined by the CCA model and the online monitoring data of different cycles (i.e., voltage, current, and cell temperature). After the degradation pattern of a battery is estimated by the PI-LSTM model, another LSTM model is then used to predict the future degradation and remaining useful life (RUL) of the battery by learning the degradation trend estimated by the PI-LSTM model. Monitoring data of eleven Lithium-ion batteries under different operating conditions was used to demonstrate the proposed method. Experimental results have shown that the proposed method can accurately model the degradation behavior as well as predict the RUL of Lithium-ion batteries under different operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
和谐的映梦完成签到,获得积分10
1秒前
CipherSage应助落后醉易采纳,获得10
2秒前
2秒前
呆萌的沛珊完成签到,获得积分10
3秒前
星辰大海应助heheha采纳,获得10
3秒前
qiao应助昏睡的静丹采纳,获得10
4秒前
5秒前
lmw完成签到,获得积分20
6秒前
比大家发布了新的文献求助10
6秒前
Xiaoxiao应助故意的睫毛膏采纳,获得10
6秒前
Sew东坡完成签到,获得积分10
7秒前
归尘发布了新的文献求助10
7秒前
科研通AI2S应助一点采纳,获得10
7秒前
8秒前
8秒前
panisa鹅完成签到 ,获得积分10
8秒前
10秒前
11秒前
qiao应助昏睡的静丹采纳,获得10
11秒前
lmw发布了新的文献求助30
11秒前
假唱卡带完成签到,获得积分10
11秒前
13秒前
bbing发布了新的文献求助10
14秒前
15秒前
15秒前
17秒前
zgt01应助饱满若灵采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
18秒前
动漫大师发布了新的文献求助10
18秒前
99v587发布了新的文献求助10
19秒前
陌雪发布了新的文献求助10
19秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780043
求助须知:如何正确求助?哪些是违规求助? 3325422
关于积分的说明 10222930
捐赠科研通 3040579
什么是DOI,文献DOI怎么找? 1668903
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614