A digital twin-based sim-to-real transfer for deep reinforcement learning-enabled industrial robot grasping

强化学习 机器人 计算机科学 人工智能 学习迁移 钢筋 人机交互 传输(计算) 工程类 结构工程 操作系统
作者
Yongkui Liu,Xu He,Ding Liu,Lihui Wang
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:78: 102365-102365 被引量:58
标识
DOI:10.1016/j.rcim.2022.102365
摘要

• A digital twin-enabled approach for achieving effective transfer of DRL algorithms to a physical robot is proposed. • A digital twin system of the physical robotic system is established, which is used to correct the real grasping point. • Experimental results verify the effectiveness of the intelligent grasping algorithm and the digital twin-enabled sim-to-real transfer approach and mechanism. Deep reinforcement learning (DRL) has proven to be an effective framework for solving various complex control problems. In manufacturing, industrial robots can be trained to learn dexterous manipulation skills from raw pixels with DRL. However, training robots in the real world is a time-consuming, high-cost and of safety concerns process. A frequently adopted approach for easing this is to train robots through simulations first and then deploy algorithms (or policies) on physical robots. How to transfer policies of robot learning from simulation to the real world is a challenging issue. Digital twin that is able to create a dynamic, up-to-date representation of a physical robotic grasping system provides an effective approach for addressing this issue. In this paper, we focus on the scenario of DRL-based assembly-oriented industrial grasping and propose a digital twin-enabled approach for achieving effective transfer of DRL algorithms to a physical robot. Two parallel training systems, i.e., the physical robotic system and corresponding digital twin system, respectively, are established, which take virtual and real images as inputs. The output of the digital twin system is used to correct the real grasping point so that accurate grasping can be achieved. Experimental results verify the effectiveness of the intelligent grasping algorithm and the digital twin-enabled sim-to-real transfer approach and mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迅速的亦巧完成签到,获得积分20
1秒前
1秒前
1秒前
2秒前
Li发布了新的文献求助10
5秒前
一瓶牛发布了新的文献求助10
5秒前
TIWOSS发布了新的文献求助10
6秒前
6秒前
xxxHolic41完成签到,获得积分10
7秒前
chan完成签到,获得积分10
7秒前
una完成签到,获得积分10
7秒前
子车茗应助奇迹探索者采纳,获得20
9秒前
哭泣凌雪完成签到,获得积分20
9秒前
不安的成风完成签到,获得积分10
9秒前
Ren发布了新的文献求助10
10秒前
13秒前
14秒前
小二郎应助DTkunkun采纳,获得10
14秒前
shenxian82133完成签到,获得积分10
14秒前
14秒前
周周完成签到,获得积分10
15秒前
TIWOSS完成签到,获得积分10
15秒前
errui发布了新的文献求助10
17秒前
yangjun完成签到,获得积分20
17秒前
青春完成签到 ,获得积分10
17秒前
17秒前
脑洞疼应助天真的幼萱采纳,获得10
17秒前
17秒前
18秒前
JamesPei应助LiuXinping采纳,获得10
18秒前
丘比特应助sunny采纳,获得10
20秒前
甜妹i怎么会不甜完成签到,获得积分10
21秒前
落幕完成签到,获得积分10
21秒前
21秒前
张鑫发布了新的文献求助10
21秒前
科研通AI5应助周周采纳,获得10
22秒前
冰魂应助fj采纳,获得10
22秒前
Jes完成签到,获得积分10
22秒前
爬不起来发布了新的文献求助10
22秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462