Estimation of Alveolar Bone Loss in Periodontitis Using Machine Learning

牙周炎 牙槽 牙科 临床附着丧失 医学 计算机科学 牙缺失 人工智能 口腔健康
作者
Nektarios Tsoromokos,Sarah Parinussa,Frank Claessen,David Anssari Moin,Bruno G. Loos
出处
期刊:International Dental Journal [Elsevier BV]
卷期号:72 (5): 621-627 被引量:12
标识
DOI:10.1016/j.identj.2022.02.009
摘要

The objective of this research was to perform a pilot study to develop an automatic analysis of periapical radiographs from patients with and without periodontitis for the percentage alveolar bone loss (ABL) on the approximal surfaces of teeth using a supervised machine learning model, that is, convolutional neural networks (CNN). A total of 1546 approximal sites from 54 participants on mandibular periapical radiographs were manually annotated (MA) for a training set (n = 1308 sites), a validation set (n = 98 sites), and a test set (n = 140 sites). The training and validation sets were used for the development of a CNN algorithm. The algorithm recognised the cemento-enamel junction, the most apical extent of the alveolar crest, the apex, and the surrounding alveolar bone. For the total of 140 images in the test set, the CNN scored a mean of 23.1 ± 11.8 %ABL, whilst the corresponding value for MA was 27.8 ± 13.8 %ABL. The intraclass correlation (ICC) was 0.601 (P < .001), indicating moderate reliability. Further subanalyses for various tooth types and various bone loss patterns showed that ICCs remained significant, although the algorithm performed with excellent reliability for %ABL on nonmolar teeth (incisors, canines, premolars; ICC = 0.763). A CNN trained algorithm on radiographic images showed a diagnostic performance with moderate to good reliability to detect and quantify %ABL in periapical radiographs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wk_sea完成签到,获得积分10
刚刚
1秒前
2秒前
orixero应助浊人采纳,获得10
2秒前
2秒前
柚子应助sunwei采纳,获得10
3秒前
胡呼呼完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
Lynn发布了新的文献求助10
4秒前
envy完成签到,获得积分10
4秒前
poohpooh发布了新的文献求助10
4秒前
chaoqi完成签到,获得积分10
5秒前
直率的雪晴完成签到,获得积分10
5秒前
灵宝宝完成签到,获得积分10
6秒前
打打应助落寞依珊采纳,获得10
6秒前
科研通AI5应助蓝蓝的腿毛采纳,获得30
6秒前
lieditongxu完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助莫小乔斯采纳,获得10
8秒前
尊敬乐蕊完成签到,获得积分10
8秒前
英格雷西发布了新的文献求助10
8秒前
8秒前
8秒前
小瑞发布了新的文献求助10
9秒前
yyds完成签到,获得积分0
9秒前
lieditongxu发布了新的文献求助10
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得30
10秒前
YOYOYO应助科研通管家采纳,获得20
10秒前
10秒前
Hello应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
yoyo完成签到,获得积分10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
10秒前
Owen应助科研通管家采纳,获得10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790371
求助须知:如何正确求助?哪些是违规求助? 3335077
关于积分的说明 10273337
捐赠科研通 3051539
什么是DOI,文献DOI怎么找? 1674723
邀请新用户注册赠送积分活动 802757
科研通“疑难数据库(出版商)”最低求助积分说明 760853