Multiscale statistical process control using wavelet packets

单变量 小波 自相关 计算机科学 小波包分解 网络数据包 过程(计算) 时域 摄动(天文学) 人工智能 算法 模式识别(心理学) 小波变换 多元统计 机器学习 统计 数学 操作系统 物理 量子力学 计算机视觉 计算机网络
作者
Marco S. Reis,Pedro Saraiva,Bhavik R. Bakshi
出处
期刊:Aiche Journal [Wiley]
卷期号:54 (9): 2366-2378 被引量:45
标识
DOI:10.1002/aic.11523
摘要

Abstract An approach is presented for conducting multiscale statistical process control (MSSPC), based on a library of basis functions provided by wavelet packets. The proposed approach explores the improved ability of wavelet packets in extracting features with arbitrary locations, and having different localizations in the time‐frequency domain, in order to improve the detection performances achieved with wavelet‐based MSSPC. A novel approach is also developed for adaptively selecting the best decomposition depth. Such an approach is described in detail and tested using artificial simulated signals, employed to compare average run length (ARL) performance against other SPC methodologies. Furthermore, its performance under real world situations is also assessed, for two industrial case studies using datasets containing process upsets, through the construction of receiver operating characteristic (ROC) curves. Both univariate and multivariate cases are covered. ARL results for a step perturbation show that the proposed methodology presents a steady good performance for all shift magnitudes, without significantly changing its relative scores, as happens with other current methods, whose relative performance depends on the shift magnitude being tested. For artificial disturbances, with features localized in the time/frequency domain, multiscale methods do present the best performance, and for the particular case of detecting a decrease in autocorrelation they are the only ones that can detect such a perturbation. In the examples using industrial datasets, where disturbances exhibit more complex patterns, multiscale approaches also present the best results, in particular in the range of low false alarms, where monitoring methods are aimed to operate. © 2008 American Institute of Chemical Engineers AIChE J, 2008

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
共享精神应助Jay采纳,获得10
3秒前
叫我富婆儿完成签到,获得积分10
4秒前
DouBo发布了新的文献求助10
4秒前
shi hui应助陌陌采纳,获得10
4秒前
大气亦巧发布了新的文献求助10
4秒前
浮游应助无心的芸采纳,获得10
5秒前
5秒前
5秒前
乐观小土豆完成签到,获得积分20
5秒前
6秒前
7秒前
行走人生发布了新的文献求助10
7秒前
万能图书馆应助如如采纳,获得10
7秒前
吴雨涛完成签到,获得积分10
7秒前
潘忠旭完成签到,获得积分10
7秒前
7秒前
可爱小张发布了新的文献求助10
8秒前
orangevv发布了新的文献求助10
8秒前
擦撒擦擦完成签到,获得积分10
9秒前
无花果应助allenise采纳,获得10
9秒前
科研通AI2S应助啦啦采纳,获得10
9秒前
10秒前
秀秀发布了新的文献求助10
10秒前
希望天下0贩的0应助曾峥采纳,获得10
10秒前
光华发布了新的文献求助10
11秒前
王一帆发布了新的文献求助10
11秒前
11秒前
中西西完成签到 ,获得积分10
12秒前
zsd完成签到,获得积分10
12秒前
13秒前
善学以致用应助爱学习采纳,获得10
13秒前
14秒前
镓氧锌钇铀应助vippp采纳,获得10
14秒前
李健的小迷弟应助WZQ采纳,获得10
15秒前
sleepingfish应助ChenYX采纳,获得20
15秒前
sleepingfish应助ChenYX采纳,获得30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299586
求助须知:如何正确求助?哪些是违规求助? 4447698
关于积分的说明 13843511
捐赠科研通 4333326
什么是DOI,文献DOI怎么找? 2378747
邀请新用户注册赠送积分活动 1374030
关于科研通互助平台的介绍 1339544