Evaluating Virtual Screening Methods: Good and Bad Metrics for the “Early Recognition” Problem

计算机科学 虚拟筛选 人工智能 机器学习 模式识别(心理学) 生物信息学 药物发现 生物
作者
Jean‐François Truchon,Christopher I. Bayly
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:47 (2): 488-508 被引量:736
标识
DOI:10.1021/ci600426e
摘要

Many metrics are currently used to evaluate the performance of ranking methods in virtual screening (VS), for instance, the area under the receiver operating characteristic curve (ROC), the area under the accumulation curve (AUAC), the average rank of actives, the enrichment factor (EF), and the robust initial enhancement (RIE) proposed by Sheridan et al. In this work, we show that the ROC, the AUAC, and the average rank metrics have the same inappropriate behaviors that make them poor metrics for comparing VS methods whose purpose is to rank actives early in an ordered list (the "early recognition problem"). In doing so, we derive mathematical formulas that relate those metrics together. Moreover, we show that the EF metric is not sensitive to ranking performance before and after the cutoff. Instead, we formally generalize the ROC metric to the early recognition problem which leads us to propose a novel metric called the Boltzmann-enhanced discrimination of receiver operating characteristic that turns out to contain the discrimination power of the RIE metric but incorporates the statistical significance from ROC and its well-behaved boundaries. Finally, two major sources of errors, namely, the statistical error and the "saturation effects", are examined. This leads to practical recommendations for the number of actives, the number of inactives, and the "early recognition" importance parameter that one should use when comparing ranking methods. Although this work is applied specifically to VS, it is general and can be used to analyze any method that needs to segregate actives toward the front of a rank-ordered list.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不眠的人完成签到,获得积分10
刚刚
1秒前
科目三应助爬不起来采纳,获得10
2秒前
bbb发布了新的文献求助10
2秒前
漂流完成签到,获得积分10
5秒前
7秒前
小孟发布了新的文献求助10
7秒前
思源应助盛夏如花采纳,获得10
9秒前
与一完成签到 ,获得积分10
9秒前
10秒前
12秒前
秋刀鱼完成签到,获得积分10
12秒前
隐形曼青应助Sunnnny采纳,获得10
13秒前
毛毛妈发布了新的文献求助30
17秒前
chen应助泛舟江上渔采纳,获得40
18秒前
AY完成签到,获得积分10
22秒前
Gloria完成签到 ,获得积分10
23秒前
jenningseastera应助rea采纳,获得10
24秒前
科研通AI5应助盛夏如花采纳,获得10
25秒前
26秒前
26秒前
27秒前
CodeCraft应助ZcoisiniS采纳,获得10
28秒前
万能图书馆应助罗Eason采纳,获得50
29秒前
小豆芽发布了新的文献求助10
29秒前
eee完成签到,获得积分10
29秒前
领导范儿应助李伟采纳,获得10
30秒前
ergou发布了新的文献求助10
31秒前
hhhuan发布了新的文献求助10
31秒前
31秒前
32秒前
勤劳的筝发布了新的文献求助10
35秒前
38秒前
38秒前
蓝天发布了新的文献求助10
38秒前
罗Eason完成签到,获得积分10
41秒前
bbb关闭了bbb文献求助
42秒前
ZcoisiniS发布了新的文献求助10
43秒前
方知发布了新的文献求助10
43秒前
43秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824284
求助须知:如何正确求助?哪些是违规求助? 3366619
关于积分的说明 10441418
捐赠科研通 3085832
什么是DOI,文献DOI怎么找? 1697588
邀请新用户注册赠送积分活动 816410
科研通“疑难数据库(出版商)”最低求助积分说明 769634