数学
规范(哲学)
非线性系统
数学分析
趋同(经济学)
能量(信号处理)
能量法
订单(交换)
紧致有限差分
收敛速度
边值问题
准确度顺序
非线性薛定谔方程
应用数学
有限差分法
薛定谔方程
数值分析
数值稳定性
物理
量子力学
法学
政治学
频道(广播)
统计
财务
经济
经济增长
电气工程
工程类
作者
Ting-Chun Wang,Boling Guo,Qiu-bin Xu
标识
DOI:10.1016/j.jcp.2013.03.007
摘要
In this paper, a fourth-order compact and energy conservative difference scheme is proposed for solving the two-dimensional nonlinear Schrödinger equation with periodic boundary condition and initial condition, and the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4+τ2) in the discrete L2-norm with time step τ and mesh size h is obtained. Besides the standard techniques of the energy method, a new technique and some important lemmas are proposed to prove the high order convergence. In order to avoid the outer iteration in implementation, a linearized compact and energy conservative difference scheme is derived. Numerical examples are given to support the theoretical analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI