黄体
黄体期
内分泌学
黄体溶解
内科学
卵泡膜
生物
男科
卵巢
激素
医学
作者
W. Colin Duncan,F.E. Rodger,Peter Illingworth
出处
期刊:Human Reproduction
[Oxford University Press]
日期:1998-09-01
卷期号:13 (9): 2435-2442
被引量:44
标识
DOI:10.1093/humrep/13.9.2435
摘要
It has been shown that immune cells, particularly macrophages, accumulate in the corpus luteum during luteolysis. This study aimed to investigate the effect of maternal recognition of pregnancy on the localization and numbers of macrophages in the human corpus luteum. Corpora lutea (n = 12) were obtained from normally cycling women at the time of hysterectomy and were dated on the basis of serial urinary luteinizing hormone (LH) estimation. In addition, corpora lutea (n = 4) were collected from women who had received daily doubling doses of human chorionic gonadotrophin (HCG) to mimic the hormonal changes of early pregnancy. Macrophages were localized by immunohistochemistry using an anti-CD68 antibody. Steroidogenic cells, steroidogenic cells of thecal origin and endothelial cells were identified on serial sections by immunohistochemistry for 3beta-hydroxysteroid dehydrogenase, 17alpha-hydroxylase and von Willebrand factor, respectively. The luteal cells capable of responding directly to HCG were identified by isotopic in-situ hybridization for messenger RNA encoding LH/HCG receptors. Macrophages were localized primarily to the vascular connective tissue and theca-lutein areas of the corpus luteum, although some were found in the granulosa-lutein cell layer. Macrophage numbers increased throughout the luteal phase to a maximum in the late-luteal phase (P < 0.05). Luteal 'rescue' with HCG was associated with a marked reduction in the numbers of tissue macrophages when compared with those of the late-luteal phase (P < 0.001). One of the effects of HCG during maternal recognition of pregnancy is to prevent the normal influx of macrophages into the corpus luteum. As LH/HCG receptors localized to the steroidogenic cells, this implies a fundamental role for steroidogenic cell products in the control of macrophage influx into the human corpus luteum.
科研通智能强力驱动
Strongly Powered by AbleSci AI