弹道
控制器(灌溉)
控制理论(社会学)
计算机科学
事件(粒子物理)
人工神经网络
跟踪(教育)
模型预测控制
控制工程
计算
控制(管理)
人工智能
工程类
算法
心理学
教育学
物理
量子力学
天文
农学
生物
作者
Chaojie Zhu,Jicheng Chen,Makoto Iwasaki,Hui Zhang
标识
DOI:10.1109/tie.2023.3266560
摘要
This article proposes an event-triggered deep learning control strategy to achieve real-time trajectory tracking control for quadrotors. In the training data collection phase, the event-triggered model predictive control (ETMPC) method is applied to the quadrotor in the simulation environment to generate training data. Then, a deep neural network (DNN) controller is trained to approximate the optimal control policy of the ETMPC. To further save computing resources of on-board processor, the event-triggered mechanism is incorporated with the DNN controller, and the dual-mode approach is employed in it. Finally, simulation and experimental results show that the proposed controller can ensure almost similar trajectory tracking performance to the ETMPC controller while requiring a lower control computation cost.
科研通智能强力驱动
Strongly Powered by AbleSci AI