Molecular Orientation-Regulated Bioinspired Multilayer Composites with Largely Enhanced Mechanical Properties

材料科学 复合材料 韧性 聚合物 极限抗拉强度 羧甲基纤维素 模数 纳米复合材料 冶金
作者
Hao Li,Xueheng Dai,Xiaoyan Han,Jianfeng Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (17): 21467-21475 被引量:12
标识
DOI:10.1021/acsami.3c01647
摘要

Natural nacre's hierarchical brick-and-mortar architecture motivates intensive studies on inorganic platelet/polymer multilayer composites, targeting mechanical property enhancement only by two strategies: optimizing the size and alignment of inorganic platelets and improving the interfacial interaction between inorganic platelets and polymers. Herein, a new strategy of polymer chain orientation to enhance the property of bioinspired multilayered composites is presented, which facilitates more stress to be transferred from polymer layers to inorganic platelets by simultaneous stiffening of multiple polymer chains. To this end, bioinspired multilayer films consisting of oriented sodium carboxymethyl cellulose chains and alumina platelets are designed and fabricated by three successive steps of water evaporation-induced gelation in glycerol, high-ratio prestretching, and Cu2+ infiltration. Regulating the orientation state of sodium carboxymethyl cellulose leads to a large enhancement of mechanical properties, including Young's modulus (2.3 times), tensile strength (3.2 times), and toughness (2.5 times). It is observed experimentally and predicted theoretically that the increased chain orientation induces failure mode transition in the multilayered films from alumina platelet pull-out to alumina platelet fracture because more stress is transferred to the platelets. This strategy opens an avenue toward rational design and manipulation of polymer aggregation states in inorganic platelet/polymer multilayer composites and allows a highly effective increase in modulus, strength, and toughness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助小刘采纳,获得10
刚刚
2秒前
2秒前
慕青应助舒心的雍采纳,获得10
2秒前
2秒前
冷酷的夜柳完成签到 ,获得积分20
3秒前
CipherSage应助何必在乎采纳,获得10
4秒前
Frankll发布了新的文献求助10
4秒前
我先睡了发布了新的文献求助10
7秒前
勤奋山晴发布了新的文献求助10
9秒前
9秒前
GU发布了新的文献求助10
9秒前
9秒前
believe完成签到,获得积分10
10秒前
JamesPei应助文又青采纳,获得10
10秒前
共享精神应助Stiezlan采纳,获得30
11秒前
15发布了新的文献求助10
12秒前
大个应助gooooose采纳,获得10
13秒前
Owen应助my采纳,获得10
14秒前
Frankll完成签到,获得积分10
15秒前
16秒前
隐形曼青应助刘叶采纳,获得10
19秒前
ji发布了新的文献求助10
19秒前
20秒前
Lucas应助十三采纳,获得10
20秒前
20秒前
21秒前
科研通AI6.1应助棋子吴采纳,获得10
22秒前
22秒前
23秒前
23秒前
科研通AI6.1应助wanganjing采纳,获得10
23秒前
李爱国应助ibigbird采纳,获得10
24秒前
无辜吐司完成签到 ,获得积分10
24秒前
24秒前
科目三应助唠叨的友菱采纳,获得10
24秒前
dd完成签到,获得积分10
26秒前
27秒前
舒心的雍发布了新的文献求助10
27秒前
姚玲发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5827638
求助须知:如何正确求助?哪些是违规求助? 6025864
关于积分的说明 15572996
捐赠科研通 4947653
什么是DOI,文献DOI怎么找? 2665623
邀请新用户注册赠送积分活动 1611434
关于科研通互助平台的介绍 1566294