Improving quantitative MRI using self‐supervised deep learning with model reinforcement: Demonstration for rapid T1 mapping

强化学习 计算机科学 人工智能 稳健性(进化) 机器学习 深度学习 概化理论 监督学习 模式识别(心理学) 人工神经网络 数学 生物化学 化学 统计 基因
作者
Wanyu Bian,Albert Jang,Fang Liu
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:92 (1): 98-111 被引量:12
标识
DOI:10.1002/mrm.30045
摘要

Abstract Purpose This paper proposes a novel self‐supervised learning framework that uses model reinforcement, REference‐free LAtent map eXtraction with MOdel REinforcement (RELAX‐MORE), for accelerated quantitative MRI (qMRI) reconstruction. The proposed method uses an optimization algorithm to unroll an iterative model‐based qMRI reconstruction into a deep learning framework, enabling accelerated MR parameter maps that are highly accurate and robust. Methods Unlike conventional deep learning methods which require large amounts of training data, RELAX‐MORE is a subject‐specific method that can be trained on single‐subject data through self‐supervised learning, making it accessible and practically applicable to many qMRI studies. Using quantitative mapping as an example, the proposed method was applied to the brain, knee and phantom data. Results The proposed method generates high‐quality MR parameter maps that correct for image artifacts, removes noise, and recovers image features in regions of imperfect image conditions. Compared with other state‐of‐the‐art conventional and deep learning methods, RELAX‐MORE significantly improves efficiency, accuracy, robustness, and generalizability for rapid MR parameter mapping. Conclusion This work demonstrates the feasibility of a new self‐supervised learning method for rapid MR parameter mapping, that is readily adaptable to the clinical translation of qMRI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺小刚发布了新的文献求助10
1秒前
幽默的蚂蚁完成签到 ,获得积分10
1秒前
zoe发布了新的文献求助10
5秒前
5秒前
爆米花应助MW采纳,获得10
5秒前
Yara.H发布了新的文献求助10
5秒前
6秒前
所所应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
黄芩完成签到,获得积分20
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
猪猪hero应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
猪猪hero应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
小王发布了新的文献求助10
11秒前
再睡十分钟完成签到,获得积分10
11秒前
所所应助马以茄采纳,获得10
14秒前
14秒前
英姑应助zhangchenyuan采纳,获得10
14秒前
15秒前
斯文败类应助LLLL采纳,获得10
17秒前
17秒前
大模型应助Yara.H采纳,获得10
19秒前
Hello应助黄芩采纳,获得10
19秒前
无花果应助神奇红桃三采纳,获得10
19秒前
19秒前
sunhao发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791995
求助须知:如何正确求助?哪些是违规求助? 3336257
关于积分的说明 10279907
捐赠科研通 3052896
什么是DOI,文献DOI怎么找? 1675420
邀请新用户注册赠送积分活动 803413
科研通“疑难数据库(出版商)”最低求助积分说明 761330